Cách giải phương trình chứa dấu giá trị tuyệt đối (cực hay, chi tiết)
Bài viết Cách giải phương trình chứa dấu giá trị tuyệt đối với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình chứa dấu giá trị tuyệt đối.
Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối(GTTĐ) ta tìm cách để khử dấu giá trị tuyệt đối, bằng cách:
– Dùng định nghĩa hoặc tính chất của GTTĐ.
– Bình phương hai vế.
– Đặt ẩn phụ.
Phương trình dạng |f(x)|=|g(x)| ta có thể giải bằng cách biến đổi tương đương như sau:
hoặc |f(x)| = |g(x)|⇔ f2(x) = g2(x)
- Đối với phương trình dạng |f(x)| = g(x)(*) ta có thể biến đổi tương đương như sau:
Hoặc
Bài 1: Giải phương trình |3x - 2| = x2 + 2x + 3
Lời giải:
Ta có:
* Nếu x ≥ 2/3 ⇒ PT ⇔ 3x - 2 = x2 + 2x + 3 ⇔ x2 - x + 5 = 0 pt vô nghiệm
* Nếu x < 2/3 ⇒ PT ⇔ -3x + 2 = x2 + 2x + 3 ⇔ x2 + 5x + 1 = 0
⇔ x = (-5 ± √21)/2 hai nghiệm này đều thỏa mãn x < 2/3
Vậy nghiệm của phương trình đã cho là x = (-5 ± √21)/2
Bài 2: Giải phương trình |x3 - 1| = |x2 - 3x + 2|
Lời giải:
Hai về không âm bình phương hai vế ta có
Vậy tập nghiệm của phương trình đã cho là S = {1; -1 + √2; -1 - √2}
Bài 3: Giải phương trình
Lời giải:
ĐKXĐ: x ≠ 1
Phương trình tương đương
Đặt t = |x - 1 - 3/(x-1)|
Suy ra
Phương trình trở thành t2 + 6 = 7t ⇔ t2 - 7t + 6 = 0 ⇔
Với t = 1 ta có
Với t = 6 ta có
Vậy phương trình có nghiệm là
Bài 4: Giải phương trình |2x - 5| + |2x2 - 7x + 5| = 0
Lời giải:
Ta có
Dấu ''='' xảy ra khi và chỉ khi
Vậy tập nghiệm của phương trình là S = {5/2}
Bài 5: Phương trình (x+1)2 - 3|x+1| + 2 = 0 có bao nhiêu nghiệm?
Lời giải:
Đặt t = |x + 1|, t ≥ 0
Phương trình trở thành t2 - 3t + 2 = 0 ⇔
Với t = 1 ta có |x + 1| = 1 ⇔ x + 1 = ±1 ⇔
Với t = 2 ta có |x + 1| = 2 ⇔ x + 1 = ±2 ⇔
Vậy phương trình có nghiệm là x = -3, x = -2, x = 0 và x = 1
Bài 1. Giải phương trình .
Hướng dẫn giải:
Ta có
• Khi |2x - 3| = 2x - 3 ta có 2(2x - 3) = hay x = .
• Khi |2x - 3| = 3 - 2x ta có 2(3 - 2x) = hay x = .
Vậy phương trình có hai nghiệm là x = và x = .
Bài 2. Giải phương trình .
Hướng dẫn giải:
Ta có
• Khi ta có hay x = 1.
• Khi ta có hay x = .
Vậy phương trình có 2 nghiệm là x = 1 và x = .
Bài 3. Biện luận số nghiệm của phương trình |2 - 3x| = 2m - 6.
Hướng dẫn giải:
• Nếu 2m – 6 < 0 hay m < 3 thì phương trình vô nghiệm.
• Nếu 2m – 6 = 0 hay m = 3 thì phương trình trở thành
|2 - 3x| = 0 hay x = (phương trình có nghiệm duy nhất)
• Nếu 2m – 6 > 0 hay m > 3 thì phương trình trở thành
(phương trình có hai nghiệm).
Vậy với m < 3 thì phương trình vô nghiệm, m = 3 thì phương trình có nghiệm duy nhất, m > 3 thì phương trình có hai nghiệm.
Bài 4. Giải phương trình |5x - 4| = |x + 4|.
Hướng dẫn giải:
Vậy phương trình có 2 nghiệm là x = 2 và x = 0.
Bài 5. Giải phương trình |7x - 1| - |5x + 1| = 0.
Hướng dẫn giải:
Vậy phương trình có 2 nghiệm là x = 1 và x = 0.
Bài 6. Giải phương trình |4x - 1| = 2x + 12.
Bài 7. Giải phương trình |-5x - 16| - 3 = 3x.
Bài 8. Giải phương trình |3x - 3| = 3x + 5.
Bài 9. Giải phương trình |3x - 2| = 3x2 + 2x + 2.
Bài 10. Giải phương trình |3x2 + 2x - 1| = 2x + 3.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Phương trình chứa ẩn ở mẫu
- Bài tập phương trình chứa ẩn ở mẫu
- Phương trình chứa ẩn dưới dấu căn
- Bài tập phương trình chứa ẩn dưới dấu căn
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều