Cách giải phương trình chứa ẩn dưới dấu căn (cực hay, chi tiết)



Bài viết Cách giải phương trình chứa ẩn dưới dấu căn với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình chứa ẩn dưới dấu căn.

Để giải phương trình chứa ẩn dưới dấu căn ta tìm cách để khử dấu căn, bằng cách:

– Nâng luỹ thừa hai vế.

– Phân tích thành tích.

– Đặt ẩn phụ.

Các dạng phương trình sau ta có thể giải bằng cách thực hiện phép biến đổi tương đương:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình có dạng a.f(x) + b.√(f(x) ) + c = 0 ta đặt √(f(x)) = t

Ngoài ra ta còn có phương pháp phân tích thành tích bằng cách nhân liên hợp

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với A, B không đồng thời bằng không

Bài 1: Giải phương trình sau √(2x-3) = x-3

Lời giải:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 2: Giải phương trình sauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Phương trình tương đương với phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 0 và x = 1

Bài 3: Giải phương trình sau √(2x-1) + x2 - 3x + 1 = 0

Lời giải:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 1 và x = 2 - √2

Bài 4: Giải phương trình sau x2 + √(x2 + 11) = 31

Lời giải:

Đặt t = √(x2 + 11), t ≥ 0. Khi đó phương trình đã cho trở thành:

t2 + t - 42 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì t ≥ 0 ⇒ t = 6, thay vào ta có √(x2 + 11) = 6

x2 + 11 = 36 ⇔ x = ±5

Vậy phương trình có nghiệm là x = ±5

Bài 5: Giải phương trình sauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Đặt t = √(3x2 - 2x + 2), điều kiện t ≥ 0. Khi đó √(3x2 - 2x + 9) = √(t2 + 7)

Phương trình trở thành √(t2 + 7) + t = 7

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có hai nghiệm x = (1 ± √22)/3

Bài 1. Giải phương trình 5x+6=4x+3.

Hướng dẫn giải:

Điều kiện xác định 5x+604x+30x-65x-34x-34

5x+6=4x+3

5x + 6 = 4x + 3

x = -3

Ta thấy x = –3 không thỏa mãn điều kiện xác định nên phương trình vô nghiệm.

Bài 2. Giải phương trình 3x+7=x+3.

Hướng dẫn giải:

Cách giải phương trình chứa ẩn dưới dấu căn (cực hay, chi tiết)

Xét phương trình x2 + 3x + 2 = 0, phương trình có 2 nghiệm phân biệt x = ­–1 (thỏa mãn) và x = –2 (thỏa mãn)

Vậy phương trình có 2 nghiệm là x = –1 và x = –2.

Bài 3. Giải phương trình x-x+1-5=0.

Hướng dẫn giải:

Điều kiện xác định: x ≥ –1

Đặt t=x+1(x0)

Ta có t2=x+1x=t2-1

Khi đó phương trình đã cho trở thành: t2 – 1 – t – 5 = 0 hay t2 – t – 6 = 0.

Xét phương trình t2 – t – 6 = 0 có: = (–1)2 – 4.1.(–6) = 25.

Phương trình có hai nghiệm phân biệt t = 3 (thỏa mãn) và t = –2 (không thỏa mãn).

Với t = 3 ta có x = 8.

Vậy phương trình có nghiệm là x = 8.

Bài 4. Giải phương trình: 1x+4=2

Hướng dẫn giải:

Điều kiện xác định: x > –4

Ta có

Cách giải phương trình chứa ẩn dưới dấu căn (cực hay, chi tiết)

x=-154 (thỏa mãn)

Vậy phương trình có nghiệm x=-154

Bài 5. Giải phương trình 2x-3=x-3.

Hướng dẫn giải:

Cách giải phương trình chứa ẩn dưới dấu căn (cực hay, chi tiết)

Vậy phương trình có nghiệm x = 6.

Bài 6. Giải phương trình x-2x-5=4.

Bài 7. Giải phương trình 5x+10=8-x.

Bài 8. Giải phương trình x+x-1=13.

Bài 9. Giải phương trình 5-x2=x-1.

Bài 10. Giải phương trình x2-2x+1=x2-2x+1.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


phuong-trinh-he-phuong-trinh.jsp


Giải bài tập lớp 10 sách mới các môn học