Bài 15 trang 60 Toán 8 Tập 2 Chân trời sáng tạo

Bài 15 trang 60 Toán 8 Tập 2: Cho tứ giác ABCD có AC và BD cắt nhau tại O. Qua O, kẻ đường thẳng song song với BC cắt AB tại E, kẻ đường thẳng song song với CD cắt AD tại F.

a) Chứng minh FE // BD;

b) Từ O kẻ đường thẳng song song với AB cắt BC tại G và đường thẳng song song với AD cắt CD tại H. Chứng minh rằng CG.DH = BG.CH.

Lời giải:

Bài 15 trang 60 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) Tam giác ABC có OE // BC (gt)

Suy ra  AEAB=AOAC (theo định lí Thalès) (1)

Tam giác ADC có OF // CD (gt)

Suy ra  AOAC=AFAD (theo định lí Thalès) (2)

Từ (1) và (2) suy ra AEAC=AFAD

Tam giác ADB có  AEAC=AFAD

Suy ra EF // BD (theo định lí Thalès đảo)

b) Tam giác ABC có OG // AB (gt)

Suy ra CGBG=COAO (theo định lí Thalès) (3)

Tam giác ACD có OH // AD (gt)

Suy ra  COAO=CHDH (theo định lí Thalès) (4)

Từ (3) (4) suy ra  CGBG=CHDH ⇒ CG.DH = BG.CH

Lời giải bài tập Toán 8 Bài tập cuối chương 7 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác