Bài 4.21 trang 79 Toán 7 Tập 1 - Kết nối tri thức

Bài 4.21 trang 79 Toán 7 Tập 1: Cho Hình 4.56, biết AB = CD, BAC^=BDC^=90°. Chứng minh rằng ΔABE=ΔDCE.

Bài 4.21 trang 79 Toán 7 Tập 1 | Kết nối tri thức Giải Toán 7

Lời giải:

Xét tam giác ABE có BAE^+ABE^+AEB^=180°.

Do đó ABE^=180°BAE^AEB^ (1).

Xét tam giác DCE có CDE^+DCE^+DEC^=180°.

Do đó DCE^=180°CDE^DEC^ (2).

BAE^=CDE^=90°,AEB^=DEC^ (2 góc đối đỉnh) nên từ (1) và (2) có ABE^=DCE^.

Xét hai tam giác ABE vuông tại A và DCE vuông tại E có:

ABE^=DCE^ (chứng minh trên).

AB = DC (theo giả thiết).

Vậy ΔABE=ΔDCE (góc nhọn – cạnh góc vuông).

Lời giải bài tập Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông hay khác:

Các bài học để học tốt Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông:

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác