Dãy tỉ số bằng nhau (Lý thuyết Toán lớp 7) - Cánh diều

Với tóm tắt lý thuyết Toán 7 Bài 6: Dãy tỉ số bằng nhau hay nhất, chi tiết sách Cánh diều sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.

Lý thuyết Dãy tỉ số bằng nhau

1. Khái niệm

Những tỉ số bằng nhau và được viết nối với nhau bởi các dấu đẳng thức tạo thành dãy tỉ số bằng nhau.

Chú ý:

- Với dãy tỉ số bằng nhau ab=cd=eg ta cũng viết a : b = c : d = e : g.

- Khi có dãy tỉ số bằng nhau ab=cd=eg, ta nói các số a, c, e tỉ lệ với các số b, d, g và viết là a : c : e = b : d : g.

Ví dụ:

- Dãy tỉ số bằng nhau 14=936=832.

- Khi nói ba số x ; y ; z tỉ lệ với các số 2 ; 3 ; 4 thì x : y : z = 2 : 3 : 4 và ta viết được dãy tỉ số bằng nhau: x2=y3=z4.

2. Tính chất

Từ tỉ lệ thức ab=cd, ta suy ra:

ab=cd=a+cb+d=acbd ( b ≠ d và b ≠ –d).

Nhận xét: Tính chất trên còn mở rộng cho dãy tỉ số bằng nhau. Chẳng hạn từ dãy tỉ số bằng nhau ab=cd=eg, ta suy ra:

ab=cd=eg=a+c+eb+d+g=ac+ebd+g (giả thiết các tỉ số đều có nghĩa).

Ví dụ: Từ dãy tỉ số 13=0,150,45=618, áp dụng tính chất của dãy tỉ số bằng nhau ta có:

13=0,150,45=618=1+0,15+63+0,45+18=7,1521,45.

3. Ứng dụng

Các tính chất của dãy tỉ số bằng nhau có nhiều ứng dụng trong thực tiễn, chẳng hạn, ứng dụng vào bài toán chia đại lượng cho trước thành các phần theo tỉ lệ cho trước.

Ví dụ: Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 2 ; 4 ; 5. Tính số viên bi của mỗi bạn, biết rằng ba bạn có tất cả 44 viên bi.

Hướng dẫn giải

Gọi số viên bi của ba bạn Minh, Hùng, Dũng lần lượt là x (viên bi); y (viên bi); z (viên bi).

Ta có: x2=y4=z5 và x + y + z = 44.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x2=y4=z5=x+y+z2+4+5=4411=4

Suy ra x = 2.4 = 8 ; y = 4.4 = 16 ; z = 5.4 = 20.

Vậy Minh có 8 viên bi, Hùng có 16 viên bi, Dũng có 20 viên bi.

Bài tập Dãy tỉ số bằng nhau

Bài 1: Tìm hai số x và y, biết: x3=y5 và x + y = 16.

Hướng dẫn giải

Áp dụng tính chất dãy tỉ số bằng nhau ta có: x3=y5=x+y3+5=168=2.

Vậy x = 3.2 = 6; y = 5.2 = 10.

Bài 2: Tìm hai số a và b, biết : a : 2 = b : (–5) và a – b = –7.

Hướng dẫn giải

Từ a : 2 = b : (–5) ta có tỉ lệ thức a2=b5.

Áp dụng tính chất dãy tỉ số bằng nhau ta có: a2=b5=ab2(5)=77=1.

Vậy a = 2. (–1) = –2 ; b = (–5). (–1) = 5.

Bài 3: Một mảnh vườn hình chữ nhật với tỉ số giữa độ dài hai cạnh của nó bằng 3 : 5 và chu vi bằng 48 m. Tính diện tích mảnh vườn đó.

Hướng dẫn giải

Gọi độ dài hai cạnh của mảnh vườn hình chữ nhật lần lượt là a (mét) và b (mét).

Ta có a3=b5 và 2.(a + b) = 48 (chu vi hình chữ nhật bằng 48 m) nên a + b = 24.

Áp dụng tính chất dãy tỉ số bằng nhau ta có: a3=b5=a+b3+5=248=3.

Suy ra a = 3.3 = 9 ; b = 5 . 3 = 15.

Vậy diện tích của mảnh vườn là 9 . 15 = 135 (m2).

Học tốt Dãy tỉ số bằng nhau

Các bài học để học tốt Dãy tỉ số bằng nhau Toán lớp 7 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác