Hai tam giác bằng nhau (Lý thuyết Toán lớp 7) - Cánh diều
Với tóm tắt lý thuyết Toán 7 Bài 3: Hai tam giác bằng nhau hay nhất, chi tiết sách Cánh diều sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.
Lý thuyết Hai tam giác bằng nhau
– Định nghĩa: Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau.
Ví dụ: Cho hai tam giác ABC và A’B’C’ như hình vẽ dưới đây:
Hai tam giác này có bằng nhau không? Vì sao?
Hướng dẫn giải
Xét tam giác ABC và tam giác A'B'C' có:
+) AB = A'B', AC = A'C', BC = B'C';
+)
Do đó hai tam giác ABC và A’B’C’ là hai tam giác bằng nhau.
– Khi tam giác ABC và tam giác A'B'C' bằng nhau thì ta kí hiệu là: ∆ABC = ∆A'B'C'.
– Quy ước: Khi viết hai tam giác bằng nhau, tên đỉnh của hai tam giác đó phải viết theo đúng thứ tự tương ứng với sự bằng nhau.
- Chú ý:
+ Nếu AB=A'B', AC = A'C', BC = B'C' và thì ∆ABC = ∆A'B'C'.
+ Nếu ∆ABC = ∆A'B'C' thì AB=A'B', AC = A'C', BC = B'C' và
Ở đây:
• Hai góc A và A' (B và B', C và C') là hai góc tương ứng;
• Hai cạnh AB và A'B' (BC và B'C', AC và A'C') là hai cạnh tương ứng.
Ví dụ: Cho hai tam giác ABC và DEF như hình vẽ dưới đây:
Hai tam giác ABC và DEF có bằng nhau không? Nếu bằng nhau hãy viết kí hiệu bằng nhau của hai tam giác đó.
Hướng dẫn giải
Xét tam giác FDE có (định lí tổng ba góc trong một tam giác)
Suy ra
Hay
Xét tam giác BCA ta cũng có: (định lí tổng ba góc trong một tam giác)
Suy ra
Hay
Xét tam giác FDE và tam giác BCA có:
+) AB = DE, AC = DF, BC = EF
+)
Do đó ∆ABC = ∆DEF.
Bài tập Hai tam giác bằng nhau
Bài 1. Cho biết DABC = DMNP, AB = 4 cm, AC = 3 cm, NP = 5 cm.
a) Tính độ dài các cạnh BC, MP, NM.
b) Tính chu vi tam giác ABC.
c) So sánh và
Hướng dẫn giải
Vì ∆ABC = ∆MNP nên ta có:
AB = MN, AC = MP, BC = NP(các cặp cạnh tương ứng)
Mà AB = 4 cm, AC = 3 cm, NP = 5 cm
Do đó MN = 4cm, MP = 3 cm, BC = 5 cm.
Vậy MN = 4cm, MP = 3 cm, BC = 5 cm.
b) Chu vi tam giác ABC là:
AB + BC + CA = 4 + 5 + 3 = 12 (cm).
Vậy chu vi tam giác ABC bằng 12 cm.
c) Xét tam giác MNP có:
• Cạnh MN đối diện với
• Cạnh MP đối diện với
• MN > MP
Do đó (quan hệ giữa cạnh và góc đối diện)
Vậy
Bài 2. Cho hình vẽ:
Biết ∆ABH = ∆BAK, tính số đo góc ABK.
Hướng dẫn giải
Vì ∆ABH = ∆BAK nên (các cặp góc tương ứng)
Mà
Suy ra
Xét tam giác ABK có (tổng ba góc trong một tam giác)
Suy ra
Hay
Vậy số đo góc ABK là 75°.
Bài 3. Cho ∆ABC = ∆A’B’C’. Biết Tính các góc của tam giác A’B’C’.
Hướng dẫn giải
Xét tam giác ABC có (tổng ba góc trong một tam giác)
Theo bài
Suy ra
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
Khi đó:
• suy ra
• suy ra
• suy ra
Vì ∆ABC = ∆A’B’C’ nên ta có:
và (các cặp góc tương ứng)
Vậy và
Học tốt Hai tam giác bằng nhau
Các bài học để học tốt Hai tam giác bằng nhau Toán lớp 7 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 7 Cánh diều hay, chi tiết khác:
Lý thuyết Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
Lý thuyết Toán 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh
Lý thuyết Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Cánh diều
- Giải SBT Toán 7 Cánh diều
- Giải lớp 7 Cánh diều (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều