Mở đầu trang 5 Toán 12 Tập 1 - Kết nối tri thức
Mở đầu trang 5 Toán 12 Tập 1: Xét một chất điểm chuyển động trên một trục số nằm ngang, chiều dương từ trái sang phải (H.1.1). Giả sử vị trí s(t) (mét) của chất điểm trên trục số đã chọn tại thời điểm t (giây) được cho bởi công thức s(t) = t3 – 9t2 + 15t, t ≥ 0. Hỏi trong khoảng thời gian nào thì chất điểm chuyển động sang phải, trong khoảng thời gian nào thì chất điểm chuyển động sang trái?
Lời giải:
Ta có s(t) = t3 – 9t2 + 15t.
Có v(t) = s'(t) = 3t2 – 18t + 15.
Chất điểm chuyển động sang phải khi v(t) > 0.
Có v(t) > 0 và v(t) < 0 1 < t < 5.
Do t ≥ 0 nên ta có:
Chất điểm chuyển động sang phải khi t ∈ (0; 1) và (5; +∞).
Chất điểm chuyển động sang trái khi t ∈ (1; 5).
Vậy chất điểm chuyển động sang phải trong khoảng thời gian từ 0 giây đến 1 giây hoặc trong khoảng thời gian lớn hơn 5 giây, chất điểm chuyển động sang trái trong khoảng thời gian từ 1 giây đến 5 giây.
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:
HĐ1 trang 6 Toán 12 Tập 1: Quan sát đồ thị của hàm số y = x2 (H.1.2) ....
HĐ2 trang 7 Toán 12 Tập 1: Xét hàm số có đồ thị như hình 1.6 ....
HĐ3 trang 7 Toán 12 Tập 1: Cho hàm số y = f(x) = x3 – 3x2 + 2x + 1 ....
Luyện tập 3 trang 9 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau ....
HĐ4 trang 9 Toán 12 Tập 1: Quan sát đồ thị của hàm số y = x3 + 3x2 – 4 (H.1.7) ....
Luyện tập 5 trang 12 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....
Bài 1.2 trang 13 Toán 12 Tập 1: Xét sự đồng biến, nghịch biến của các hàm số sau ....
Bài 1.3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau ....
Bài 1.4 trang 13 Toán 12 Tập 1: Xét chiều biến thiên của các hàm số sau ....
Bài 1.7 trang 14 Toán 12 Tập 1: Tìm cực trị của các hàm số sau ....
Bài 1.8 trang 14 Toán 12 Tập 1: Cho hàm số y = f(x) = |x| ....
Bài 1.9 trang 14 Toán 12 Tập 1: Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới ....
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT