Bài 1.8 trang 14 Toán 12 Tập 1 - Kết nối tri thức

Bài 1.8 trang 14 Toán 12 Tập 1: Cho hàm số y = f(x) = |x|.

a) Tính các giới hạn limx0+fxf0x0limx0fxf0x0.

Từ đó suy ra hàm số không có đạo hàm tại x = 0.

b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại x = 0 (xem hình 1.4).

Lời giải:

a) limx0+fxf0x0=limx0+x0x0=limx0+xx=1.

limx0fxf0x0=limx0x0x0=limx0xx=1.

Do limx0+fxf0x0limx0fxf0x0 nên hàm số không có đạo hàm tại x = 0.

b) Theo định nghĩa, hàm số f(x) đạt cực tiểu tại x = x0 nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x ∈ (x0 – h; x0 + h) và  x ≠ x0 .

Ở đây, x0 = 0. Ta sẽ chứng minh rằng tồn tại số h > 0 sao cho f(x) > f(0) với mọi x ∈ (– h; h).

Với mọi x ∈ (– h; h), ta có |x| < h.

Mà |x| > 0, với mọi x ≠ 0. Do đó f(x) = |x| > 0 = f(0), với mọi x ∈ (– h; h) và x ≠ 0.

Vậy ta chứng minh được rằng với mọi x ∈ (– h; h) và x ≠ x0, f(x) > f(0). Điều này chứng tỏ rằng hàm số có cực tiểu tại x = 0.

Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác