Luyện tập 4 trang 36 Toán 12 Tập 2 Cánh diều

Luyện tập 4 trang 36 Toán 12 Tập 2: Cho khối chóp cụt đều tạo bởi khối chóp đỉnh S, diện tích hai đáy lần lượt là B, B' và chiều cao h. Chọn trục Ox chứa đường cao của khối chóp và gốc O trùng với đỉnh S (Hình 21). Hai mặt phẳng đáy của khối chóp cụt đều lần lượt cắt Ox tại I và I'.

Luyện tập 4 trang 36 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Đặt OI = b, OI' = a (a < b). Một mặt phẳng (P) vuông góc với trục Ox tại x (a ≤ x ≤ b), cắt khối chóp cụt đều theo hình phẳng có diện tích S(x). Người ta chứng minh rằng S(x) = Bx2b2. Tính thể tích khối chóp cụt đều đó.

Lời giải:

Thể tích khối chóp cụt đều đó là:

V=abSxdx=abBx2b2dx=Bx33b2ab=B3b2b3a3

=Bba3a2+ab+b2b2=ba3Ba2b2+ab+1.

B'=Ba2b2  hay B'B=a2b2  và h = b – a nên

V=h3BB'B+B'B+1=h3B+BB'+B'.

Lời giải bài tập Toán 12 Bài 4: Ứng dụng hình học của tích phân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác