Hoạt động 4 trang 37 Toán 12 Tập 2 Cánh diều

Hoạt động 4 trang 37 Toán 12 Tập 2: Xét nửa hình tròn tâm O, bán kính r (Hình 24). Nửa hình tròn đó là hình phẳng giới hạn bởi trục Ox và đồ thị hàm số y = f(x).

a) Tìm hàm số y = f(x).

b) Quay nửa hình tròn đó quanh trục hoành, ta nhận được hình cầu tâm O bán kính r (Hình 25). Xét điểm M(x; f(x)) (– r ≤ x ≤ r) nằm trên nửa đường tròn tâm O bán kính r. Gọi H(x; 0) là hình chiếu của điểm M trên trục Ox. Khi quay nửa hình tròn quanh trục hoành, đoạn thẳng HM tạo nên một hình tròn tâm H bán kính f(x).

Tính diện tích S(x) của hình tròn đó theo f(x).

Từ đó, sử dụng công thức tính thể tích vật thể, hãy tính thể tích V của hình cầu tâm O bán kính r.

Hoạt động 4 trang 37 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

a) Hàm số y = f(x) chính là phương trình của nửa đường tròn tâm O, bán kính r.

Ta có phương trình đường tròn tâm O, bán kính r là x2 + y2 = r2.

Suy ra y = f(x) = r2x2 (do nửa đường tròn nằm phía trên trục Ox (Hình 24)).

b) Hình tròn tâm H bán kính f(x) có diện tích là S(x) = πf2(x).

Thể tích của hình cầu tâm O bán kính r là:

V=rrSxdx=rrπf2xdx=πrrr2x22dx=πrrr2x2dx

=πr2xx33rr=πr2rr33r2rr33=43πr3

Lời giải bài tập Toán 12 Bài 4: Ứng dụng hình học của tích phân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác