Giải Toán 11 trang 115 Tập 1 Kết nối tri thức

Với Giải Toán 11 trang 115 Tập 1 trong Bài 16: Giới hạn của hàm số Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 115.

Luyện tập 3 trang 115 Toán 11 Tập 1: Tính limx+x2+2x+1.

Lời giải:

Ta có limx+x2+2x+1=limx+x21+2x2x+1=limx+x1+2x2x1+1x=limx+1+2x21+1x

=limx+1+2x2limx+1+1x=limx+1+limx+2x2limx+1+limx+1x=11=1.

Vận dụng trang 115 Toán 11 Tập 1: Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.

Vận dụng trang 115 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Tính h theo a.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Lời giải:

a) Ta có: A = (a; 0) ⇒ OA = a; B = (0; 1) ⇒ OB = 1

Tam giác OAB vuông tại O có đường cao OH nên ta có

1OH2=1OA2+1OB2

Do đó, 1h2=1a2+112h=a2a2+1 = aa2+1.

b) Khi điểm A dịch chuyển về O, ta có OA = a = 0, suy ra h = 0, do đó điểm H dịch chuyển về điểm O.

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, ta có OA = a ⟶ +∞.

Ta có: lima+h=lima+a2a2+1=lima+a2a21+1a2=lima+11+1a2=1.

Do đó, điểm H dịch chuyển về điểm B.

HĐ4 trang 115 Toán 11 Tập 1: Nhận biết khái niệm giới hạn vô cực

Xét hàm số fx=1x2 có đồ thị như Hình 5.6.

HĐ4 trang 115 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Cho xn=1n, chứng tỏ rằng f(xn) ⟶ +∞.

Lời giải:

Ta có: xn=1n, do đó fxn=1xn2=11n2=n2.

Vì n ⟶ +∞ nên xn=1n0 và f(xn) ⟶ +∞.

Lời giải bài tập Toán 11 Bài 16: Giới hạn của hàm số hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác