Giải Toán 11 trang 21 Tập 1 Cánh diều

Với Giải Toán 11 trang 21 Tập 1 trong Bài 2: Các phép biến đổi lượng giác Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 21.

Bài 6 trang 21 Toán 11 Tập 1: Cho cos2a = 13 với π2π. Tính: sina, cosa, tana.

Lời giải:

Do π2π nên cosa < 0 và sina > 0.

Áp dụng công thức hạ bậc ta có:

• sin2a = 1cos2a2=1132=13sina = 33 (do sina > 0).

• cos2a = 1+cos2a2=1+132=23 cosa = 63(do cosa < 0).

Khi đó: tan a = sinacosa=336322.

Vậy sin a = 33, cos a = 63 và tan a = 22.

Bài 7 trang 21 Toán 11 Tập 1: Cho cos2x = 14. Tính: A = cosx+π6cosx-π6; B = sinx+π3sinx-π3.

Lời giải:

Ta có:

A = cosx+π6cosx-π6

=12cosx+π6+xπ6+cosx+π6x+π6

=12cos2x+cosπ3

=1214+12=38.

B = sinx+π3sinx-π3

=12cosx+π3+xπ3cosx+π3x+π3

=12cos2xcos2π3

=121412=38.

Vậy A = 38, B = -38.

Bài 8 trang 21 Toán 11 Tập 1: Rút gọn biểu thức: A = sin2x1+cos2x.

Lời giải:

A = sin2x1+cos2x

2sinxcosx1+2cos2x1                     (sử dụng công thức nhân đôi)

2sinxcosx2cos2x

sinxcosx = tan x.

Vậy A = tan x.

Bài 9 trang 21 Toán 11 Tập 1: Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).

Bài 9 trang 21 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Tính tanα, ở đó α là góc giữa hai sợi cáp trên.

b) Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

Lời giải:

a) Đặt AOH^=β.

Đặt BOH^=γ

Xét DBOH vuông tại H, ta có: tanγ=BHHO=1215=45.

tanα = tan(βBOH^) = tanβγ=tanβtanγ1+tanβtanγ

=1415451+1415.45=21513175=10131.

Vậy tanα=10131.

b) Từ tanα=10131, để tìm số đo góc α, ta sử dụng máy tính cầm tay, trước tiên chuyển máy về chế độ “độ”, sau đó ấn lần lượt các nút:

SHIFT  tan  1  0  ÷  1  3  1  =°'''

Ta được kết quả làm tròn kết quả đến hàng đơn vị theo đơn vị độ là 4°.

Vậy α ≈ 4°.

Bài 10 trang 21 Toán 11 Tập 1: Có hai chung cư cao tầng xây cạnh nhau với khoảng cách giữa chúng là HK = 20 m. Để đảm bảo an ninh, trên nóc chung cư thứ hai người ta lắp camera ở vị trí C. Gọi A, B lần lượt là vị trí thấp nhất, cao nhất trên chung cư thứ nhất mà camera có thể quan sát được (Hình 18). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư thứ nhất). Biết rằng chiều cao của chung cư thứ hai là CK = 32 m, AH = 6 m, BH = 24 m (làm tròn kết quả đến hàng phần mười theo đơn vị độ).

Bài 10 trang 21 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

Bài 10 trang 21 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Kẻ AM ⊥ CK, BN ⊥CK (hình vẽ) ta có:

BN = AM = HK = 20 (m);

CN = CK – NK = CK – BH = 32 – 24 = 8 (m);

MN = AB = BH – AH = 24 – 6 = 18 (m);

CM = CN + MN = 8 + 18 = 26 (m).

Đặt BCN^=α,ACM^=β.

Xét BCN vuông tại N có: tanα=BNCN=208=52;

Xét ACM vuông tại M có: tanβ=AMCM=2026=1013;

Ta có: tanACB^=tanBCN^ACM^=tanαβ

tanACB^=tanαtanβ1+tanαtanβ=5210131+52.1013=4576.

=> ACB^31°.

Vậy góc ACB (phạm vi camera có thể quan sát được ở chung cư I) có số đo xấp xỉ 31°.

Lời giải bài tập Toán 11 Bài 2: Các phép biến đổi lượng giác hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác