Bài 4.35 trang 72 Toán 10 Tập 1 - Kết nối tri thức

Bài 4.35 trang 72 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho A(2;1), B(-2;5) và C(-5;2).

a) Tìm tọa độ của các vecto BA và BC.

b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.

Lời giải:

a) Ta có: BA4;4 và BC3;3.

b) Ta có: BA.BC = 4.(–3) + (–4).(–3) = –12 + 12 = 0

⇒ BA ⊥ BC

∆ABC vuông tại B.

Diện tích tam giác vuông ABC là:

SΔABC=12.AB.BC

=12.42+42.32+32

=12.42.32=12 (đvdt)

c) Tọa độ trọng tâm G của tam giác ABC là:

xG=2+2+53=53yG=1+5+23=83

G53;83

Vậy tọa độ trọng tâm của tam giác ABC là: G53;83.

d) Để tứ giác BCAD là hình bình hành khi DA=BC

Ta có: DA2x;1y và BC3;3

Khi đó, ta có hệ phương trình:

2x=31y=3x=5y=4D5;4.

Vậy với D(5;4) thì tứ giác BCAD là một hình bình hành.

Lời giải bài tập Toán 10 Bài tập cuối chương 4 hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài tập cuối chương 4:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác