Cho hình vuông ABCD và điểm M bất kì trên cạnh BC (M khác B và C)

Bài 6 trang 82 sách bài tập Toán 9 Tập 2: Cho hình vuông ABCD và điểm M bất kì trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với DM tại H. Chứng minh BHCD là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BHCD.

Lời giải:

Cho hình vuông ABCD và điểm M bất kì trên cạnh BC (M khác B và C)

Ta có BCD^=90° (do ABCD là hình vuông), BHD^=90° (do BH ⊥ DH).

Khi đó, tam giác BHD vuông tại H và tam giác BCD vuông tại C cùng nội tiếp đường tròn đường kính BD.

Do đó, tứ giác BHCD nội tiếp đường tròn đường kính BD.

Gọi I là trung điểm của BD, khi đó I là tâm của đường tròn ngoại tiếp tứ giác BHCD.

Lời giải SBT Toán 9 Bài 2: Tứ giác nội tiếp hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác