Cho đường tròn (O), đường kính AB, C là trung điểm của OA và dây MN vuông góc với OA tại C
Bài 5 trang 82 sách bài tập Toán 9 Tập 2: Cho đường tròn (O), đường kính AB, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MN. Chứng minh BCHK là tứ giác nội tiếp.
Lời giải:
Ta có (do MN ⊥ OA tại C), (góc nội tiếp chắn nửa đường tròn (O) đường kính AB) hay
Khi đó, tam giác BCH vuông tại C và tam giác BKH vuông tại K cùng nội tiếp đường tròn đường kính HB.
Do đó, tứ giác BCHK nội tiếp đường tròn đường kính HB.
Lời giải SBT Toán 9 Bài 2: Tứ giác nội tiếp hay khác:
Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Chân trời sáng tạo
- Giải SBT Toán 9 Chân trời sáng tạo
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
Giải bài tập lớp 9 Chân trời sáng tạo khác
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST