Cho tam giác ABC. Giả sử M là điểm trên cạnh AB sao cho

Bài tập 11 trang 82 SBT Toán lớp 8 Tập 2: Cho tam giác ABC. Giả sử M là điểm trên cạnh AB sao cho MBMA=13, N là điểm trên cạnh BC sao cho NBNC=13.

a) Chứng minh MN // AC và MN = 14AC.

b) Gọi K là giao điểm của AN và CM. Chứng minh KNKA=KMKC=14.

c) Nếu thay điều kiện MBMA=13 và NBNC=13bằng điều kiện CM là phân giác của góc C, AN là phân giác của góc A thì tam giác ABC phải thỏa mãn điều kiện gì để MN // AC?

Lời giải:

Cho tam giác ABC. Giả sử M là điểm trên cạnh AB sao cho

a) Xét tam giác ABC có:

MBMA=NBNC    =13

Nên MN // AC (định lí Thalès đảo).

MBMA=13 nên MA = 3MB.

Tam giác ABC có MN // AC nên MNAC=BMAB=BMBM+MA=BM4BM=14.

Suy ra MN = 14AC.

b) Tam giác MNK có MN // AC nên KNKA=KMKC=MNAC=14.

c) Nếu MN // AC thì MBMA=NBNC (định lí Thalès) (1).

Vì CM là tia phân giác của góc BCA trong tam giác ABC nên MBMA=BCAC (2).

Vì AN là tia phân giác của góc BAC trong tam giác ABC nên NBNC=ABAC (3).

Từ (1), (2), (3) suy ra ABAC=BCAC nên AB = BC.

Do đó, tam giác ABC cân tại B.

Ngược lại, nếu tam giác ABC cân tại B, CM là phân giác của góc C, AN là phân giác góc A thì dễ thấy MN // AC.

Vậy để MN // AC thì điều kiện là tam giác ABC cân tại B.

Lời giải SBT Toán 8 Chương tập ôn tập cuối năm hay khác:

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác