Một nhóm người gồm 3 bạn nam và 3 bạn nữ mua 6 chiếc vé xem phim
Bài 8.31 trang 59 Sách bài tập Toán lớp 10 Tập 2: Một nhóm người gồm 3 bạn nam và 3 bạn nữ mua 6 chiếc vé xem phim với các chỗ ngồi liên tiếp nhau.
a) Có bao nhiêu cách xếp chỗ ngồi sao cho các bạn nam và các bạn nữ ngồi xen kẽ nhau?
b) Có bao nhiêu cách xếp chỗ ngồi sao cho các bạn nữ ngồi liên tiếp nhau ?
Lời giải:
a)
Để tiện hình dung, ta đánh số các chiếc ghế từ trái qua phải 1, 2, 3, 4, 5, 6.
1 |
2 |
3 |
4 |
5 |
6 |
Để các bạn nam, nữ ngồi xen kẽ thì có hai phương án:
– Phương án 1: các bạn nữ ngồi các ghế 1, 3 và 5, các bạn nam ngồi các ghế 2, 4 và 6;
– Phương án 2: các bạn nữ ngồi các ghế 2, 4 và 6, các bạn nam ngồi các ghế 1, 3 và 5;
Ta hãy đếm số cách ngồi theo từng phương án. Với mỗi phương án, mỗi cách ngồi có được thực hiện qua 2 công đoạn:
– Công đoạn 1: xếp chỗ cho các bạn nữ;
– Công đoạn 2: xếp chỗ cho các bạn nam.
Số cách xếp chỗ cho 3 bạn nữ vào 3 chỗ ngồi chính là số hoán vị của 3, nghĩa là:
3! = 3.2.1 = 6 (cách).
Tương tự, số cách xếp chỗ cho 3 bạn nam vào 3 chỗ ngồi là:
3! = 3.2.1 = 6 (cách).
Vì vậy, theo quy tắc nhân, số cách xếp chỗ ngồi của mỗi phương án là:
6.6 = 36 (cách).
Như vậy, theo quy tắc cộng thì tổng số các cách xếp chỗ là:
36 + 36 = 72 (cách).
b)
Để xếp các bạn nữ ngồi liên tiếp nhau, ta có 4 phương án:
– Phương án 1: các bạn nữ ngồi các ghế 1, 2 và 3;
– Phương án 2: các bạn nữ ngồi các ghế 2, 3 và 4;
– Phương án 3: các bạn nữ ngồi các ghế 3, 4 và 5;
– Phương án 4: các bạn nữ ngồi các ghế 4, 5 và 6.
Với mỗi phương án, việc xếp chỗ cho nhóm bạn có thể được thực hiện qua hai công đoạn:
– Công đoạn 1: xếp chỗ cho các bạn nữ;
– Công đoạn 2: xếp chỗ cho các bạn nam.
Tương tự như a), số cách xếp chỗ cho 3 bạn nữ vào 3 chỗ ngồi và số cách xếp chỗ cho 3 bạn nam vào 3 chỗ ngồi đều bằng 6.
Do đó, số cách xếp chỗ theo mỗi phương án đều là 36. Vì vậy, theo quy tắc cộng tổng số các cách ngồi là:
36 + 36 + 36 + 36 = 144 (cách).
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT