Cho đường thẳng Δ: x . sinα° + y . cosα° – 1 = 0, trong đó α là một số thực
Bài 7.26 trang 42 Sách bài tập Toán lớp 10 Tập 2: Cho đường thẳng Δ: x . sinα° + y . cosα° – 1 = 0, trong đó α là một số thực thuộc khoảng (0; 180).
a) Tính khoảng cách từ gốc toạ độ O đến đường thẳng Δ.
b) Chứng minh rằng khi α thay đổi, tồn tại một đường tròn cố định luôn tiếp xúc với đường thẳng Δ.
Lời giải:
a)
Khoảng cách từ O(0; 0) đến đường thẳng Δ là
Do (sinαo)2 + (cosαo)2 = 1 với α là một số thực thuộc khoảng (0; 180).
b)
Giả sử (C) là đường tròn có tâm O và bán kính R = 1.
Với α là một số thực thuộc khoảng (0; 180) có thể thay đổi thì có:
d(O, Δ) = 1 = R không đổi
nên (C) luôn tiếp xúc với Δ.
Vậy phương trình đường tròn (C) cần tìm là x2 + y2 = 1.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT