Giải bài 3 trang 18 sgk Giải tích 12



Bài 3 (trang 18 SGK Giải tích 12): Chứng minh hàm số y = |x| không có đạo hàm tại x = 0 nhưng vẫn đạt được cực tiểu tại điểm đó.

Lời giải:

Hàm số y = |x| có tập xác định D = ℝ và liên tục trên ℝ.

+ Chứng minh hàm số Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 không có đạo hàm tại x = 0.

Xét giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 :

Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Suy ra không tồn tại giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12.

Hay hàm số không có đạo hàm tại x = 0.

+ Chứng minh hàm số đạt cực tiểu tại x = 0 (Dựa theo định nghĩa).

Ta có : f(x) > 0 = f(0) với mọi x thuộc (-1; 1) và x ≠ 0

Do đó hàm số y = f(x) đạt cực tiểu tại x = 0.

Kiến thức áp dụng

Hàm số y = f(x) liên tục trên (a ; b) và x0 ∈ (a ; b).

+ Hàm số y = f(x) có đạo hàm tại x0 nếu tồn tại giới hạn Giải bài 3 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số y = f(x) đạt cực tiểu tại x0 nếu tồn tại số dương h sao cho f(x) > f(x0) với ∀ x ∈ (x0 – h ; x0 + h) và x ≠ x0.  

Tham khảo lời giải các bài tập Toán 12 bài 2 khác:

Các bài giải Toán 12 Giải tích Tập 1 Chương 1 khác:


cuc-tri-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học