Bài 55 trang 165 SBT Toán 9 Tập 1



Bài 6: Tính chất của hai tiếp tuyến cắt nhau

Bài 55 trang 165 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O; 2cm), các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B và C là các tiếp điểm)

a. Tứ giác ABOC là hình gì? Vì sao?

b. Gọi M là điểm bất kì thuộc cung nhỏ BC. Qua M kẻ tiếp tuyến với đường tròn, cắt AB và AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.

c. Tính số đo góc DOE

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Ta có :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác ABOC có 3 góc vuông nên nó là hình chữ nhật

Mặt khác : AB = AC (tính chất hai tiếp tuyến cắt nhau)

Suy ra tứ giác ABOC là hình vuông

b. Theo tính chất của hai tiếp tuyến cắt nhau ta có :

DB = DM

EM = EC

Chu vi của tam giác ADE bằng :

AD + DE + EA = AD + DM + ME + EA

= AD + DB + AE + EC = AB + AC = 2AB

Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:

AB = OB = 2 (cm)

Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)

c. Theo tính chất của hai tiếp tuyến cắt nhau ta có:

OD là tia phân giác của góc BOM

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-6-tinh-chat-cua-hai-tiep-tuyen-cat-nhau.jsp


Giải bài tập lớp 9 sách mới các môn học