Bài 52 trang 165 SBT Toán 9 Tập 1



Bài 6: Tính chất của hai tiếp tuyến cắt nhau

Bài 52 trang 165 Sách bài tập Toán 9 Tập 1: Cho đường tròn (I) nội tiếp tam giác ABC. Các tiếp điểm trên AC, AB theo thứ tự là D, E. Cho BC = a, AC = b, AB = c. Tính độ dài các đoạn tiếp tuyến AD, AE theo a, b, c.

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi F là tiếp điểm của đường tròn (I) với BC.

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

AE = AD

BE = BF

CD = CF

Mà: AE = AB – BE

AD = AC – CD

Nên: AE + AD = (AB – BE) + (AC – CD) = AB + AC – (BE + CD)

= AB + AC – (BF + CF) = AB + AC – BC

Suy ra: AE + AD = c + b – a

Hay: AE = AD = (c + b - a)/2

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-6-tinh-chat-cua-hai-tiep-tuyen-cat-nhau.jsp


Giải bài tập lớp 9 sách mới các môn học