Bài 63 trang 166 SBT Toán 9 Tập 1



Bài 6: Tính chất của hai tiếp tuyến cắt nhau

Bài 63 trang 166 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại D. Chứng minh rằng SABC = BD.DC

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi E và F lần lượt là tiếp điểm của đường tròn với AD và AC

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AE = AF

BE = BD

CD = CF

BD = BC + CD

BE = AB – AE

Suy ra: BD + BE = AB + BC – (AE + CD)

= AB + BC – (AE + CE)

= AB + BC – AC

Suy ra: BD = (AB + BC - AC)/2

Lại có: CD = BC – BD

CF = AC = AF

Suy ra: CD + CF = BC + AC – (BD + AF)

= BC + AC – (BE + AE)

= BC + AC – BA

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy SABC = BD.DC.

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-6-tinh-chat-cua-hai-tiep-tuyen-cat-nhau.jsp


Giải bài tập lớp 9 sách mới các môn học