Bài 28 trang 10 SBT Toán 8 Tập 2



Bài 4: Phương trình tích

Bài 28 trang 10 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:

a. (x – 1)(5x + 3) = (3x – 8)(x – 1)

b. 3x(25x + 15) – 35(5x + 3) = 0

c. (2 – 3x)(x + 11) = (3x – 2)(2 – 5x)

d. (2x2 + 1)(4x – 3) = (2x2 + 1)(x – 12)

e. (2x – 1)2 + (2 – x)(2x – 1) = 0

f. (x + 2)(3 – 4x) = x2 + 4x + 4

Lời giải:

a) (x – 1)(5x + 3) = (3x – 8)(x – 1)

⇔ (x – 1)(5x + 3) – (3x – 8)(x – 1) = 0

⇔ (x – 1)[(5x + 3) – (3x – 8)] = 0

⇔ (x – 1)(5x + 3 – 3x + 8) = 0

⇔ (x – 1)(2x + 11) = 0 ⇔ x – 1 = 0 hoặc 2x + 11 = 0

Nếu x – 1 = 0 ⇔ x = 1

Nếu 2x + 11 = 0 ⇔ x = – 5,5

Vậy phương trình có nghiệm x = 1; x = – 5,5.

b) 3x(25x + 15) – 35(5x + 3) = 0

⇔ 15x(5x + 3) – 35(5x + 3) = 0

⇔ (15x – 35)(5x + 3) = 0

⇔ 15x – 35 = 0 hoặc 5x + 3 = 0

Nếu 15x – 35 = 0 ⇔ Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

Nếu 5x + 3 = 0 ⇔ Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

Vậy phương trình có nghiệm Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

c) (2 – 3x)(x + 11) = (3x – 2)(2 – 5x)

⇔ (2 – 3x)(x + 11) – (3x – 2)(2 – 5x) = 0

⇔ (2 – 3x)(x + 11) + (2 – 3x)(2 – 5x) = 0

⇔ (2 – 3x)[(x + 11) + (2 – 5x)] = 0

⇔ (2 – 3x)(x + 11 + 2 – 5x) = 0

⇔ (2 – 3x)(13 – 4x) = 0

⇔ 2 – 3x = 0 hoặc 13 – 4x = 0

Nếu 2 – 3x = 0 ⇔ Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

Nếu 13 – 4x = 0 ⇔ Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

Vậy phương trình có nghiệm Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8; Bài 28 trang 10 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

d) (2x2 + 1)(4x – 3) = (2x2 + 1)(x – 12)

⇔ (2x2 + 1)(4x – 3) – (2x2 + 1)(x – 12) = 0

⇔ (2x2 + 1)[(4x – 3) – (x – 12)] = 0

⇔ (2x2 + 1)(4x – 3 – x + 12) = 0

⇔ (2x2 + 1)(3x + 9) = 0

⇔ 2x2 + 1 = 0 hoặc 3x + 9 = 0

Nếu 2x2 + 1 = 0: vô nghiệm (vì 2x2 ≥ 0 nên 2x2 + 1 > 0)

Nếu 3x + 9 = 0 ⇔ x = – 3.

Vậy phương trình có nghiệm x = – 3.

e) (2x – 1)2 + (2 – x)(2x – 1) = 0

⇔ (2x – 1)(2x – 1) + (2 – x)(2x – 1) = 0

⇔ (2x – 1)[(2x – 1) + (2 – x)] = 0

⇔ (2x – 1)(2x – 1 + 2 – x) = 0

⇔ (2x – 1)(x + 1) = 0

⇔ 2x – 1 = 0 hoặc x + 1 = 0

Nếu 2x – 1 = 0 ⇔ x = 0,5

Nếu x + 1 = 0 ⇔ x = – 1

Vậy phương trình có nghiệm x = 0,5; x = – 1.

f) (x + 2)(3 – 4x) = x2 + 4x + 4

⇔ (x + 2)(3 – 4x) – (x + 2)2 = 0

⇔ (x + 2)(3 – 4x) – (x + 2)(x + 2) = 0

⇔ (x + 2)[(3 – 4x) – (x + 2)] = 0

⇔ (x + 2)(3 – 4x – x – 2) = 0

⇔ (x + 2)(1 – 5x) = 0

⇔ x + 2 = 0 hoặc 1 – 5x = 0

Nếu x + 2 = 0 ⇔ x = – 2

Nếu 1 – 5x = 0 ⇔ x = 0,2

Vậy phương trình có nghiệm x = – 2; x = 0,2.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-4-phuong-trinh-tich.jsp


Giải bài tập lớp 8 sách mới các môn học