46 câu trắc nghiệm Ôn tập cuối năm Toán 12 Giải tích có đáp án (phần 1)



Với 46 bài tập & câu hỏi trắc nghiệm Ôn tập cuối năm Toán lớp 12 Giải tích có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

Câu 1: Tìm m để y = x3 - 3x2 +mx - 1 có hai điểm cực trị tại x1, x2 thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 3x2 - 6x + m.

Hàm số có cực trị khi y' = 0 có hai nghiệm phân biệt :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 2: Tìm m để hàm số y = (1/3)x3 - x2 - mx + 1 luôn đồng biến trên từng khoảng xác định của nó

A. m < - 1   B. m > -1    C. m ≤ -1    D. m > -1

Tập xác định : D = R

Ta có : y'=x2 - 2x - m

Để hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi:

y' = x2 - 2x - m ≥ 0, ∀ x ⇔ Δ' = 1 + m ≤ 0 ⇔ m ≤ -1

Câu 3: Tìm m để phương trình |x3 + 3x2 - 9x + 2| = m có 6 nghiệm phân biệt

A. 0 < m < 3   B. m = 3     C. 3 < m < 29   D. m > -3

Vẽ đồ thị hàm số y = x3 + 3x2 – 9x + 2 (C)

Giữ phần đồ thị (C) phía trên trục Ox, lấy đối xứng phần đồ thị (C) dưới trục Ox qua trục Ox.

Bỏ phần đồ thị dưới trục Ox ta được đồ thị y = |x3 + 3x2 – 9x + 2|.

Dựa vào đồ thị ta có đáp án A.

Câu 4: Tìm m để hàm số y = -x3 + (2m + 1)x2 - (m2 - 3m +2)x - 4 có cực đại, cực tiểu nằm về hai phía so với trục tung

A. m ∈ (1; 2)    B. m ∈ [1; 2]

C. m ∈ (- ∞; 1) ∪ (2; +∞)   D. m ∈ (- ∞; 1] ∪ [2; +∞)

y' = -3x2 + 2(2m + 1)x - m2 + 3m - 2

Để hàm số đã cho có cực đại, cực tiểu nằm về hai phía so với trục tung khi và chỉ khi phương trình y’ = 0 có hai nghiệm x1, x2 trái dấu.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 5: Tìm m để hàm số y = x3 - 3mx2 + 12x - 2 nghịch biến trên khoảng (1; 4)

A. m ≥ 5/2   B. m ≤ 5/2   C. m ≤ 2    D. Đáp án khác

Tìm m để hàm số y = x3 - 3mx2 + 12x - 2 nghịch biến trên khoảng ( 1; 4)

y' = 3x2 - 6mx + 12 = 3(x2 - 2mx + 4)

y' = 0 ⇔ x2 - 2mx + 4 = 0

Đặt f(x) = x2 – 2mx + 4

* Trường hợp 1:

y' ≤ 0 ∀ x ∈ R ⇔ Δ' = m2 - 4 ≤ 0 ⇔ - 2 ≤ m ≤ 2

Khi đó hàm số đã cho nghịch biến trên R.

* Trường hợp 2. Giả sử phương trình y’ = 0 có 2 nghiệm phân biệt x1; x2 . Để hàm số nghịch biến trên khoảng ( 1; 4) khi

x1 ≤ 1 < 4 ≤ x2

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 6: Đồ thị hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

có đường tiệm cận ngang có phương trình là

A. y = 1   B. y = 0   C. y = 1/2    D. y = ±1/2

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 7: Hệ số góc của tiếp tuyến của đồ thị hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

tại giao điểm của đồ thị hàm số với trục tung bằng

A. –2    B. 2    C. 1     D. –1.

Giao điểm với trục tung B(0 ;-1). Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hệ số góc của tiếp tuyến của đồ thị hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 tại giao điểm của đồ thị hàm số với trục tung bằng k = 2.

Câu 8: Cho đồ thị hàm số y = x3 - 2x2 + 2x . Gọi x1, x2 là hoành độ các điểm M, N trên (C) mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng y = -x + 2016. Khi đó x1 + x2 bằng:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có y' = 3x2 - 4x + 2

Do tiếp tuyến của (C) vuông góc với đường thẳng y = -x + 2016 nên hệ số góc của tiếp tuyến là k = 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9: Cho hàm số y = x3 - 3x + 2 (C) . Tìm phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(-1; 0).

A. y = 0    B. y = x + 1   C. y = x - 1   D. y = 2

Ta có: y’ = 3x2 – 3

Phương trình tiếp tuyến tại điểm A (x0; x03 - 3x0 + 2) là:

y = (3x02 - 3)(x - x0) + x03 - 3x0 + 2 (*)

Để tiếp tuyến này đi qua điểm (-1; 0) thì:

0 = (3x02 - 3)(-1 - x0) + x03 - 3x0 + 2

⇔ 0 = -3x02 - 3x03 + 3 + 3x0 + x03 - 3x0 + 2

⇔ -2x03 - 3x02 + 5 = 0 ⇒ x0 = 1

Thay vào (*) ta được phương trình tiếp tuyến cần tìm là :y = 0

Câu 10: Tìm m để đồ thị hàm số y = x3 + 3x2 + mx + 2m cắt đường thẳng y = -x + 2 tại 3 điểm.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C

Câu 11: Tìm m để đồ thị hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

có đường tiệm cận ngang

A. m ≠ 0   B. m ≠ ±1    C. m ≠ 1    D. Cả A và B.

* Nếu m = 0 thì y = x nên hàm số đã cho không có tiệm cận ngang.

* Nếu m = 1 thì y = 1 nên hàm số không có tiệm cận ngang.

* Nếu m = -1 thì y = -1 nên hàm số không có tiệm cận ngang.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy để hàm số đã cho có tiệm cận ngang thì m ≠ 0 và m ≠ ±1;

Câu 12: Hàm số y = (x - 1)ex với x ∈ [-1; 1] đạt giá trị lớn nhất tại x bằng

A. 1    B. -1   C. 0   D. 1/2

Vẽ đồ thị y' = xex. y' = 0 => x = 0

y(0) = -1; y(-1) = -2/e; y(1) = 0

Vậy hàm số đã cho đạt giá trị lớn nhất tại x = 1.

Câu 13: Hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

đạt giá trị lớn nhất tại x bằng

A. 1    B. 1/2    C. -2   D. -1.

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 14: Tìm m để đồ thị hàm số y = x4 - 2m2x2 + 1 có ba cực trị tạo thành tam giác vuông.

A. m = ± 1   B. m = ± 2     C. m = 3    D. Đáp án khác.

Chọn đáp án A

Câu 15: Tính giá trị biểu thức log35.log49.log52

A. 1/2    B. 1   C. 2   D. 3

log35. log49. log52 = (log35.log52).log2232 = log32.log23 = 1

Câu 16: Tìm đạo hàm của hàm số y = (√3)x2

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = (√3)x2.ln√3(x2)'

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 17: Nếu 4x - 4x - 1 = 24 thì (2x)x bằng

A. 5√5   B. 25   C. 25√5   D. 125.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 18: Giải phương trình log3x + log9x + log81x = 7

A. x = 27   B. x = 81   C. x = 729    D. x = 243

Điều kiện : x > 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Kết hợp điều kiện, vậy x = 81.

Câu 19: Nếu (log3x)(log2xy) = logxx2 thì y bằng

A. 9   B. 9/2    C. 18   D. 81

Điều kiện : x > 0 ; y > 0.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 20: Tìm miền xác định của hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. D = (1; +∞)\{ee}   B. D = (0; +∞)\{e}

C. D = (ee; +∞)   D. D = (1; +∞)\{e}

Điều kiện

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy miền xác định của hàm số là D = (1; +∞)\{ee}

Câu 21: Ngày 15 tháng 2 năm 2010 ông A gửi vào ngân hàng 500 triệu đồng với hình thức lãi kép và lãi suất 10,3% một năm. Tại thời điểm đó ông A dự tính sẽ rút hết tiền ra vào 15 tháng 2 năm 2013. Nếu trong khoảng thời gian đó lãi suất không thay đổi thì số tiền mà ông A rút được là bao nhiêu? Làm tròn kết quả đến hàng nghìn.

A. 608305000 đồng.     B. 665500000 đồng.

C. 670960000 đồng.    D. 740069000 đồng.

Sau 3 năm từ 2010 đến 2013, số tiền ông A rút được : 500000000.(1 + 0,103)3 = 670959863 ≈ 970960000 (đồng)

Câu 22: Tìm giá trị lớn nhất của hàm số y = x2e-x trên đoạn [-1; 4]

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 2xe-x - x2e-x = xe-x(2 - x); y' = 0 <=> x = 0 hoặc x = 2

y(-1) = e, y(0) = 0, y(2) = 4/e2, y(4) = 16/e4

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 23: Tìm tập nghiệm của phương trình log(x + 3) + log(x - 1) = log(x2 - 2x -3)

A. ∅    B. {0}     C. R    D. (1; +∞)

Điều kiện x > 3. Khi đó: log(x + 3) + log(x - 1) = log(x2 - 2x - 3)

<=> log[(x + 3)(x - 1)] = log(x2 - 2x - 3) <=> x2 + 2x - 3 = x2 - 2x + 3

<=> 4x = 0 <=> x = 0 (loại).

Vậy phương trình vô nghiệm

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi Tốt nghiệp THPT có đáp án hay khác:




Giải bài tập lớp 12 sách mới các môn học