14 bài tập trắc nghiệm Số phức (có đáp án)



Với 14 bài tập & câu hỏi trắc nghiệm Số phức lớp 12 có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

Câu 1: Cho hai số phức z1 = 1 + 2i, z2 = 2 - 3i . Phần thực và phần ảo của số phức w = 3z1 - 2z2 là

A. 1 và 12   B. -1 và 12   C. –1 và 12i   D. 1 và 12i.

Ta có: w = 3z1 - 2z2 = 3(1 + 2i) - 2(2 - 3i) = -1 + 2i.

Vậy phần thực và phần ảo của w là -1 và 12

Câu 2: Phần thực và phần ảo của số phức z = (1 + √3i)2 là

A. 1 và 3   B. 1 và -3   C. -2 và 2√3    D. 2 và -2√3 .

Ta có: z = 1 + 2√3 + 3i2 = -2 + 2√3i

Vậy phần thực và phần ảo của z là -2 và 2√3

Câu 3: Phần ảo của số phức z = (1 + √i)3 là

A. 3√3   B. -3√3   C. – 8i    D. –8.

Ta có: z = i(1 + √3i)3 = i(1 + 3√3i - 9 - 3√3i) = -8i .

Vậy phần ảo của z là -8

Câu 4: Thực hiện phép tính:

Bài tập trắc nghiệm Toán 12 (có lời giải)

ta có:

A. T = 3 + 4i   B. T = -3 + 4i   C. T = 3 – 4i   D. T = -3 – 4i.

Ta có:

Bài tập trắc nghiệm Toán 12 (có lời giải) Bài tập trắc nghiệm Toán 12 (có lời giải)

=> T = -3 + 4i

Câu 5: Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là

A. 3   B. 5   C. 17   D. √17

Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là:

Đặt z = a + bi(a, b ∈ R). Ta có: z = a - bi và (2 - i)z = (2 - i)(a - bi) = 2a - 2bi - ai - b = 2a - b - (2b + a)i

Do đó : z = (2 - i)z = 13 - 3i ⇔ a + bi + 2a - b - (2b + a)i = 13 - 3i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 6: Phần thực và phần ảo của số phức z thỏa mãn (1 - i)z - 1 + 5i = 0 là

A. 3 và –2   B. 3 và 2   C. 3 và – 2i   D. 3 và 2i.

Ta có: (1 - i)z - 1 + 5i = 0 ⇔ (1 - i)z = 1 - 5i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Vậy phần thực và phần ảo của z là 3 và -2

Câu 7: Môđun của số phức z thỏa mãn điều kiện (3z - z)(1 + i) - 5z = 8i - 1 là

B. 1   B. 5   C. √13     D. 13.

Đặt z = a + bi(a, b ∈ R).

Ta có: z = a - bi và 3z - z = 3(a + bi) - (a - bi) = 2a + 4bi,

Do đó: (3z - z)(1 + i) = 2a - 4b + (2a + 4b)i - 5(a + bi) = 8i - 1

Theo giả thiết: (2a - 4b) + (2a + 4b)i - 5(a + bi) = 8i - 1

⇔ -3a - 4b + (2a - b)i = -1 + 8i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 8: Cho số phức z thỏa mãn: i.z + z = 2 + 2i và z.z = 2. Khi đó z2 bằng:

A. 2    B. 4   C. – 2i    D. 2i.

Đặt z = a + bi(a, b ∈ R). Ta có: z = a - bi và z.z = a2 + b2 = 2(1)

Ta có: i.z + z = 2 + 2i ⇔ i(a - bi) + a + bi = 2 + 2i

⇔ a + b + (a + b)i = 2 + 2i ⇔ a + b = 2 (2)

Từ (1) và (2) suy ra a = b = 1. Suy ra z=1+i

Vậy z2 = (1 + i)2 = 1 + 2i - 1 = 2i

Câu 9: Cho số phức z thỏa mãn (1 + i)(z - i) + 2z = 2i. Môđun của số phức:

Bài tập trắc nghiệm Toán 12 (có lời giải)

A. 2    B. 4   C. √10   D. 10

Đặt z = a + bi(a, b ∈ R). Ta có :

(1 + i)(z - i) = (1 + i)[a + (b - 1)i] = a - b + 1 + (a + b - 1)i

Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i

⇔ a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i ⇔ (3a - b + 1) + (a + 3b - 1)i = 2i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Suy ra z = 1 và

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 10: Cho số phức z thỏa mãn

Bài tập trắc nghiệm Toán 12 (có lời giải)

Khi đó môđun của số phức w = 1 + z + z2 là

A. 5   B. √13    C. 13    D. √5

Đặt z = a + bi(a, b ∈ R). Ta có

Bài tập trắc nghiệm Toán 12 (có lời giải)

⇔ 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)

⇔ 3a - b - 2 + (a - 7b + 6)i = 0

Bài tập trắc nghiệm Toán 12 (có lời giải)

Suy ra z = 1 + i và w = 1 + (1 + i) + (1 + i)2 = 2 + 3i.

Vậy: |w| = √(4 + 9) = √13

Câu 11: Phương trình z2 - 2z + 3 = 0 có các nghiệm là

A. 2±2√2i   B. -2±2√2i     C. -1±2√2i   D. 1±2√2i

Ta có: Δ' = 12 - 3 = -2 = 2i2. Phương trình có hai nghiệm: z1,2 = 1 ± 2i

Câu 12: Phương trình z4 - 2z2 - 3 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1|2 + |z2|2 + |z3|2 + |z4|2 bằng

A. 4    B. 8   C. 2√3   D. 2 + 2√3

Phương trình tương đương với: z2 = -1 = i2 hoặc z2 = 3. Các nghiệm của phương trình là: z1 = i, z2 = -i, z3 = √3, z4 = -√-3.

Vậy T = 1 + 1 + 3 + 3 = 8

Câu 13: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z - 2i| = 4 là

A. Đường tròn tâm I(1; -2) bán kính R = 4

B. Đường tròn tâm I(1; 2) bán kính R = 4

C. Đường tròn tâm I(0; 2) bán kính R = 4

D. Đường tròn tâm I(0; -2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có:

|z - 2i| = 4 ⇔ |a + (b - 2)i| = 4

Bài tập trắc nghiệm Toán 12 (có lời giải)

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(0 ;2), bán kính R = 4

Câu 14: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 3 - 2i| = 4 là

A. Đường tròn tâm I(3; 2) bán kính R = 4

B. Đường tròn tâm I(3; -2) bán kính R = 4

C. Đường tròn tâm I(-3; 2) bán kính R = 4

D. Đường tròn tâm I(-3; -2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có: |z + 3 - 2i| = 4 ⇔ |a - bi + 3 - 2i| = 4

⇔ |(a + 3) - (b + 2)i| = 4

Bài tập trắc nghiệm Toán 12 (có lời giải)

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(-3 ;-2), bán kính R = 4

Xem thêm bài tập trắc nghiệm Toán lớp 12 có đáp án hay khác:




Giải bài tập lớp 12 sách mới các môn học