15 Bài tập trắc nghiệm ôn Toán 12 Chương 4 Giải tích có đáp án



Với 15 bài tập & câu hỏi trắc nghiệm ôn Toán 12 Chương 4 Giải tích có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán học 12.

Bài 1: Cho số phức z thỏa mãn: i.z + z = 2 + 2i và z.z = 2. Khi đó z2 bằng:

A. 2    B. 4   C. – 2i    D. 2i.

Đặt z = a + bi(a, b ∈ R). Ta có: z = a - bi và z.z = a2 + b2 = 2(1)

Ta có: i.z + z = 2 + 2i ⇔ i(a - bi) + a + bi = 2 + 2i

⇔ a + b + (a + b)i = 2 + 2i ⇔ a + b = 2 (2)

Từ (1) và (2) suy ra a = b = 1. Suy ra z=1+i

Vậy z2 = (1 + i)2 = 1 + 2i - 1 = 2i

Bài 2: Cho số phức z thỏa mãn (1 + i)(z - i) + 2z = 2i. Môđun của số phức:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 2    B. 4   C. √10   D. 10

Đặt z = a + bi(a, b ∈ R). Ta có :

(1 + i)(z - i) = (1 + i)[a + (b - 1)i] = a - b + 1 + (a + b - 1)i

Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i

⇔ a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i ⇔ (3a - b + 1) + (a + 3b - 1)i = 2i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra z = 1 và

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Cho số phức z thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó môđun của số phức w = 1 + z + z2 là

A. 5   B. √13    C. 13    D. √5

Đặt z = a + bi(a, b ∈ R). Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇔ 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)

⇔ 3a - b - 2 + (a - 7b + 6)i = 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra z = 1 + i và w = 1 + (1 + i) + (1 + i)2 = 2 + 3i.

Vậy: |w| = √(4 + 9) = √13

Bài 4: Phương trình z2 - 2z + 3 = 0 có các nghiệm là

A. 2±2√2i   B. -2±2√2i     C. -1±2√2i   D. 1±2√2i

Ta có: Δ' = 12 - 3 = -2 = 2i2. Phương trình có hai nghiệm: z1,2 = 1 ± 2i

Bài 5: Phương trình z4 - 2z2 - 3 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1|2 + |z2|2 + |z3|2 + |z4|2 bằng

A. 4    B. 8   C. 2√3   D. 2 + 2√3

Phương trình tương đương với: z2 = -1 = i2 hoặc z2 = 3. Các nghiệm của phương trình là: z1 = i, z2 = -i, z3 = √3, z4 = -√-3.

Vậy T = 1 + 1 + 3 + 3 = 8

Bài 6: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z - 2i| = 4 là

A. Đường tròn tâm I(1; -2) bán kính R = 4

B. Đường tròn tâm I(1; 2) bán kính R = 4

C. Đường tròn tâm I(0; 2) bán kính R = 4

D. Đường tròn tâm I(0; -2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có:

|z - 2i| = 4 ⇔ |a + (b - 2)i| = 4

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(0 ;2), bán kính R = 4

Bài 7: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 3 - 2i| = 4 là

A. Đường tròn tâm I(3; 2) bán kính R = 4

B. Đường tròn tâm I(3; -2) bán kính R = 4

C. Đường tròn tâm I(-3; 2) bán kính R = 4

D. Đường tròn tâm I(-3; -2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có: |z + 3 - 2i| = 4 ⇔ |a - bi + 3 - 2i| = 4

⇔ |(a + 3) - (b + 2)i| = 4

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(-3 ;-2), bán kính R = 4

Bài 8: Cho hai số phức z1 = 1 + 2i, z2 = 2 - 3i . Phần thực và phần ảo của số phức w = 3z1 - 2z2 là

A. 1 và 12   B. -1 và 12   C. –1 và 12i   D. 1 và 12i.

Ta có: w = 3z1 - 2z2 = 3(1 + 2i) - 2(2 - 3i) = -1 + 2i.

Vậy phần thực và phần ảo của w là -1 và 12

Bài 9: Phần thực và phần ảo của số phức z = (1 + √3i)2 là

A. 1 và 3   B. 1 và -3   C. -2 và 2√3    D. 2 và -2√3 .

Ta có: z = 1 + 2√3 + 3i2 = -2 + 2√3i

Vậy phần thực và phần ảo của z là -2 và 2√3

Bài 10: Phần ảo của số phức z = (1 + √i)3 là

A. 3√3   B. -3√3   C. – 8i    D. –8.

Ta có: z = i(1 + √3i)3 = i(1 + 3√3i - 9 - 3√3i) = -8i .

Vậy phần ảo của z là -8

Bài 11: Thực hiện phép tính:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

ta có:

A. T = 3 + 4i   B. T = -3 + 4i   C. T = 3 – 4i   D. T = -3 – 4i.

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

=> T = -3 + 4i

Bài 12: Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là

A. 3   B. 5   C. 17   D. √17

Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là:

Đặt z = a + bi(a, b ∈ R). Ta có: z = a - bi và (2 - i)z = (2 - i)(a - bi) = 2a - 2bi - ai - b = 2a - b - (2b + a)i

Do đó : z = (2 - i)z = 13 - 3i ⇔ a + bi + 2a - b - (2b + a)i = 13 - 3i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 13: Phần thực và phần ảo của số phức z thỏa mãn (1 - i)z - 1 + 5i = 0 là

A. 3 và –2   B. 3 và 2   C. 3 và – 2i   D. 3 và 2i.

Ta có: (1 - i)z - 1 + 5i = 0 ⇔ (1 - i)z = 1 - 5i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy phần thực và phần ảo của z là 3 và -2

Bài 14: Môđun của số phức z thỏa mãn điều kiện (3z - z)(1 + i) - 5z = 8i - 1 là

B. 1   B. 5   C. √13     D. 13.

Đặt z = a + bi(a, b ∈ R).

Ta có: z = a - bi và 3z - z = 3(a + bi) - (a - bi) = 2a + 4bi,

Do đó: (3z - z)(1 + i) = 2a - 4b + (2a + 4b)i - 5(a + bi) = 8i - 1

Theo giả thiết: (2a - 4b) + (2a + 4b)i - 5(a + bi) = 8i - 1

⇔ -3a - 4b + (2a - b)i = -1 + 8i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi Tốt nghiệp THPT có đáp án hay khác:




Giải bài tập lớp 12 sách mới các môn học