Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm lớp 9 (cực hay, có đáp án)



Bài viết Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm.

Cho parabol (P): y = ax2 (a ≠ 0) và đường thẳng y = mx + n.

Bước 1: Viết phương trình hoành độ giao điểm của parabol và đường thẳng.

ax2 = mx + n ⇔ ax2 - mx - n = 0 (*)

Bước 2: Xét điều kiện để parabol có điểm chung với đường thẳng:

- TH1: Parabol tiếp xúc với đường thẳng (có 1 điểm chung) ⇒ phương trình hoành độ giao điểm có nghiệm kép (Δ = 0 hoặc Δ' = 0).

- TH2: Parabol cắt đường thẳng tại hai điểm phân biệt (có 2 điểm chung phân biệt) ⇒ phương trình hoành độ giao điểm có hai nghiệm phân biệt (Δ > 0 hoặc Δ' > 0).

Bước 3:Xét điều kiện về vị trí giao điểm:

+) Đường thẳng (d) cắt parabol (P) tại hai điểm nằm phía trên trục hoành ⇒ a > 0.

+) Đường thẳng (d) cắt parabol (P) tại hai điểm nằm phía dưới trục hoành ⇒ a < 0.

+) Đường thẳng (d) cắt parabol (P) tại hai điểm nằm cùng phía so với trục tung ⇔ phương trình hoành độ giao điểm có nghiệm cùng dấu Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án hay a.n < 0.

+) Đường thẳng (d) cắt parabol (P) tại hai điểm cùng nằm phía bên phải trục tung ⇔ phương trình hoành độ giao điểm có nghiệm dương Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

+) Đường thẳng (d) cắt parabol (P) tại hai điểm cùng nằm phía bên trái trục tung ⇔ phương trình hoành độ giao điểm có nghiệm âm Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

+) Đường thẳng (d) cắt (P) tại hai điểm nằm về hai phía trục tung ⇔ phương trình hoành độ giao điểm có hai nghiệm trái dấu Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án hay a.n > 0

+) Đường thẳng (d) cắt (P) tại hai điểm thỏa mãn điều kiện khác: Sử dụng hệ thức Vi-ét, kết hợp biến đổi biểu thức.

Bước 4: Kết luận.

Ví dụ 1: Cho parabol (P): y = x2 và đường thẳng (d): y = x + m (với m là tham số). Giá trị của m để (d) cắt (P) tại hai điểm phân biệt ở hai phía so với trục tung là:

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải

Chọn A

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Ví dụ 2:Tìm giá trị của tham số m để đường thẳng (d): y = -x + 2m và parabol (P): Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án cắt nhau tại hai điểm phân biệt nằm cùng phía so với trục tung.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải

Chọn A

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Ví dụ 3: Đường thẳng nào sau đây cắt đồ thị hàm số y = ax2 (a > 0) tại hai điểm khác phía so với trục tung và cách đều trục tung với mọi m?

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải

Chọn B

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 1: Tìm giá trị nguyên âm của m để parabol (P): y = x2 cắt đường thẳng (d): y = (m - 1)x + m + 2 (với m là tham số, m ≠ 1) tại hai điểm phân biệt nằm ở hai phía so với trục tung.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án A

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 2: Cho đường thẳng (d): y = mx + 2 và parabol (P): Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án . Gọi giao điểm của đường thẳng (d) với parabol (P) là A, B và giao điểm của (d) với trục tung là G. Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành. Tìm m để diện tích tam giác GHK bằng 4.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án A

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 3: Cặp parabol và đường thẳng nào sau đây tiếp xúc nhau tại điểm có hoành độ dương ở phía trên trục hoành?

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án C

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 4: Đường thẳng (d): y = x + 1 tiếp xúc với parabol nào sau đây tại điểm A sao cho OA = 5?

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án D

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 5: Tìm m để đường thẳng (d): y = (m + 3)x + m2 tiếp xúc với parabol (P): y = -4x2 tại điểm cách trục hoành 1 đơn vị.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án B

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 6: Gọi A và B là hai giao điểm của parabol (P): Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án và đường thẳng (d): Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án. Phương trình đường thẳng (d’) tiếp xúc với parabol (P) tại điểm C sao cho tam giác ABC có diện tích lớn nhất là:

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án B

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 7: Cho hàm số y = 2x2 có đồ thị là parabol (P) và hai điểm A(2; 3), B(-1; 0). Gọi C là giao điểm của (P) và đường thẳng AB phía bên phải trục tung. Phương trình đường thẳng qua C và có một điểm chung duy nhất với (P) là:

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án A

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 8: Tìm m để parabol (P): y = x2 tiếp xúc với đường thẳng (d1): y = 2mx - m2 tại giao điểm của (d1) và (d2): y = x + 2 ở phía bên trái trục tung.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án C

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 9: Cho parabol (P): y = -x2 và đường thẳng (d): y = mx - 2 (với m là tham số). Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho độ dài đoạn AB đạt giá trị nhỏ nhất.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án C

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Bài 10: Cho parabol (P): Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án . Tìm m để đường thẳng (d); y = m cắt (P) tại hai điểm A và B khác phía so với trục tung sao cho diện tích tam giác OAB bằng 16.

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Lời giải:

Đáp án C

Cách làm bài toán parabol cắt đường thẳng thỏa mãn điều kiện về vị trí giao điểm cực hay, có đáp án

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Giải bài tập lớp 9 sách mới các môn học