Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai lớp 9 (hay, chi tiết)
Bài viết Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Biến đổi đơn giản biểu thức chứa căn thức bậc hai.
a) Đưa một thừa số ra ngoài dấu căn
Với hai biểu thức A, B mà B ≥ 0 ta có
Ví dụ:
b) Đưa thừa số vào trong dấu căn
Với A ≥ 0, B ≥ 0 thì
Với A < 0, B ≥ 0 thì
Ví dụ:
c) Khử mẫu của biểu thức dưới dấu căn.
Với AB ≥ 0 và B ≠ 0 thì
Ví dụ:
d) Trục căn thức ở mẫu
Trục căn thức ở mẫu số là biến đổi để biểu thức đó mất căn thức ở mẫu số
• Với các biểu thức A, B mà B > 0 ta có:
Ví dụ:
• Với các biểu thức A, B, C mà A ≥ 0, A ≠ B2, ta có:
Ví dụ:
• Với các biểu thức A, B, C mà A ≥ 0, B ≥ 0, A ≠ B ta có:
Ví dụ:
- Để rút gọn biểu thức chứa căn bậc hai, ta cần vận dụng phối hợp các phép tính và các phép biến đổi đã biết.
- Khi rút gọn một dãy các phép tính cộng, trừ, nhân, chia, lũy thứa và khai phương thì thứ tự thực hiện: khai căn trước rồi đến lũy thừa, sau đó đến nhân, chia, cộng, trừ
Câu 1: Cho biểu thức
(với x ≥ 0; x ≠ 1 và x ≠ 1/4).
Tìm tất cả các giá trị của x để B < 0.
Lời giải:
Ta có:
(với x ≥ 0; x ≠ 1 và x ≠ 1/4).
Kết hợp điều kiện ta có x ∈ [0; 1/4].
Câu 2: Giải các phương trình sau:
Lời giải:
a) Điều kiện xác định:
Kết hợp (1), (4), (*) và (**) ta có điều kiện xác định: x ≤ 1
Ta có:
b) Điều kiện xác định: .
So sánh điều kiện ta có: x = -7; x = 2 (t/m). Vậy S = {-7; 2}.
c) Điều kiện xác định x ∈ [0; 1]\{1/2}.
Ta có:
Từ (*) và (**) suy ra phương trình (2) vô nghiệm.
Vậy S = {0; 1}.
Câu 3: Rút gọn các biểu thức sau:
Lời giải:
a) Ta có:
b) Ta có
Khi đó: .
Câu 4: Chứng minh rằng
(n ∈ N; n ≥ 2)
Lời giải:
Bài giảng: Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 8: Rút gọn biểu thức chứa căn thức bậc hai (hay, chi tiết)
- Trắc nghiệm Bài 8 (có đáp án): Rút gọn biểu thức chứa căn thức bậc hai
- Lý thuyết Bài 9: Căn bậc ba (hay, chi tiết)
- Trắc nghiệm Bài 9 (có đáp án): Căn bậc ba
- Tổng hợp Lý thuyết Chương 1 Đại Số 9 (hay, chi tiết)
- Tổng hợp Trắc nghiệm Chương 1 Đại Số 9 (có đáp án)
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều