Các dạng bài tập Nhận dạng đồ thị hàm số chọn lọc, có đáp án
Phần Nhận dạng đồ thị hàm số Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Nhận dạng đồ thị hàm số hay nhất tương ứng.
Bài giảng: Cách nhận dạng đồ thị hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
- 4 dạng bài Nhận dạng đồ thị hàm số trong đề thi Đại học có lời giải Xem chi tiết
- Dạng 1: Cách nhận dạng đồ thị hàm số bậc 3 Xem chi tiết
- Dạng 2: Cách nhận dạng đồ thị hàm số bậc 4 trùng phương Xem chi tiết
- Dạng 3: Cách nhận dạng đồ thị hàm số phân thức Xem chi tiết
Cách nhận dạng đồ thị hàm số bậc 3
Các dạng đồ thị của hàm số bậc 3 y = ax3 + bx2 + cx + d (a ≠ 0)
Đồ thị hàm số có 2 điểm cực trị nằm 2 phía so với trục Oy khi ac < 0
Đồ thị hàm số bậc ba luôn nhận điểm uốn làm tâm đối xứng
Ví dụ 1: Đường cong trong hình bên dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A. y = x3 - 3x + 1.
B. y = -x3 + 3x2 + 1.
C. y = x3 - 3x2 + 3x + 1.
D. y = -x3 - 3x2 - 1.
Hướng dẫn
Nhìn dạng đồ thị thấy a > 0 , suy ra loại B, D.
Mặt khác hàm số không có cực trị nên loại A.
Chọn C.
Ví dụ 2: Cho hàm số bậc 3 có dạng: y = f(x) = ax3 + bx2 + cx + d.
Hãy chọn đáp án đúng?
A. Đồ thị (IV) xảy ra khi a > 0 và f'(x) = 0 có nghiệm kép.
B. Đồ thị (II) xảy ra khi a ≠ 0 và f'(x) = 0 có hai nghiệm phân biệt.
C. Đồ thị (I) xảy ra khi a < 0 và f'(x) = 0 có hai nghiệm phân biệt.
D. Đồ thị (III) xảy ra khi a > 0 và f'(x) = 0 vô nghiệm.
Hướng dẫn
Hàm số của đồ thị (II) có a < 0 nên điều kiện a ≠ 0 chưa đảm bảo. Do đó loại phương án B.
Hàm số của đồ thị (I) có a > 0 nên loại luôn phương án C.
Hàm số của đồ thị (IV) có a < 0 nên loại luôn phương án A.
Chọn D.
Ví dụ 3: Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
A. a < 0,b > 0,c > 0,d > 0.
B. a < 0,b < 0,c = 0,d > 0.
C. a > 0,b < 0,c > 0,d > 0.
D. a < 0,b > 0,c = 0,d > 0.
Hướng dẫn
Từ hình dáng đồ thị ta suy ra hệ số a < 0,d > 0 loại đáp án C.
Ta có: y' = 3ax2 + 2bx + c
Vì hàm số đạt cực tiểu tại điểm x = 0 nên y'(0) = 0 ⇒ c = 0 loại đáp án A.
Khi đó: y' = 0 ⇔ 3ax2 + 2bx = 0 ⇔ x = 0 hoặc x = -2b/3a
Do hoành độ điểm cực đại dương nên -2b/3a > 0, mà a < 0 ⇒ b > 0.
Chọn D.
Cách nhận dạng đồ thị hàm số bậc 4
Các dạng đồ thị của hàm số bậc 4 trùng phương y = ax4 + bx2 + c (a ≠ 0)
Đồ thị có 3 điểm cực trị :
Đồ thị có 1 điểm cực trị :
Đồ thị hàm bậc bốn trùng phương luôn nhận trục tung làm trục đối xứng
Ví dụ 1: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?
A. y = x4 - 3x2+1. B. y = x4 + 2x2.
C. y = x4 - 2x2. D. y = -x4 - 2x2.
Hướng dẫn
Từ đồ thị và đáp án suy ra đây là hàm số bậc 4 trùng phương: y = ax4 + bx2 + c (a ≠ 0) có 3 cực trị nên a > 0,b < 0. Do đó loại B, D. Do đồ thị qua O(0; 0)nên c = 0 loại A.
Từ đồ thị suy ra hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = ±1 nên loại A, B, D.
Chọn C.
Ví dụ 2: Giả sử hàm số y = ax4 + bx2 + c có đồ thị là hình bên dưới. Tìm a,b, c.
Hướng dẫn
y' = 4ax3 + 2bx
Nhìn đồ thị ta thấy :
Ví dụ 3: Cho hàm số y=f(x) có đồ thị (C) như hình vẽ. Chọn khẳng định sai về hàm số f(x):
A. Hàm số f(x) tiếp xúc với Ox.
B. Hàm số f(x) đồng biến trên (-1; 0).
C. Hàm số f(x) nghịch biến trên (-∞; -1).
D. Đồ thị hàm số f(x) có tiệm cận ngang là y = 0.
Hướng dẫn
Từ đồ thị ta suy ra các tính chất của hàm số:
1. Hàm số đạt CĐ tại x = 0 và đạt CT tại x = ±1.
2. Hàm số tăng trên (-1; 0) và (1; +∞).
3. Hàm số giảm trên (-∞; -1) và (0; 1).
4. Hàm số không có tiệm cận.
Chọn D.
Cách nhận dạng đồ thị hàm số phân thức
Các dạng đồ thị của hàm số nhất biến y = (ax + b)/(cx + d),(ab - bc ≠ 0)
Đồ thị hàm nhất biến luôn nhận giao của hai đường tiệm cận làm tâm đối xứng
Ví dụ 1: Xác định a,b,c để hàm số y = (ax - 1)/(bx + c) có đồ thị như hình vẽ bên dưới.
Hướng dẫn
Đồ thị hàm số cắt Oy tại A(0; 1) nên (-1)/c = 1 ⇒ c = -1 (3)
Từ (1), (2), (3) ta có c = -1, b = 1, a = 2.
Ví dụ 2: Hàm số y = (x - 2)/(x - 1) có đồ thị là hình vẽ nào sau đây? Hãy chọn câu trả lời đúng.
A.
B.
C.
D.
Hướng dẫn
Hàm số y = (x - 2)/(x - 1) có tiệm cận đứng x = 1. Tiệm cận ngang y = 1 nên loại trường hợp D.
Đồ thị hàm số y = (x - 2)/(x - 1) đi qua điểm (0; 2) nên chọn đáp án A.
Ví dụ 3: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Hướng dẫn
Nhìn vào đồ thị ta thấy ngay tiệm cận đứng x = -1, tiệm cận ngang y = 2. Loại B, D.
Đồ thị hàm số đi qua điểm (0; -1).
y = (2x + 1)/(x + 1) khi x = 0 ⇒ y = 1. Loại đáp án B.
y = (2x - 1)/(x + 1) khi x = 0 ⇒ y = -1. Chọn đáp án A.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tổng hợp lý thuyết Chương Ứng dụng đạo hàm để khảo sát hàm số
- Chủ đề: Tính đơn điệu của hàm số
- Chủ đề: Cực trị của hàm số
- Chủ đề: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
- Chủ đề: Tiệm cận của đồ thị hàm số
- Chủ đề: Tiếp tuyến của đồ thị hàm số
- Chủ đề: Tương giao của đồ thị hàm số
- Chủ đề: Điểm thuộc đồ thị
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều