Các dạng bài tập Nhận dạng đồ thị hàm số chọn lọc, có đáp án



Phần Nhận dạng đồ thị hàm số Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Nhận dạng đồ thị hàm số hay nhất tương ứng.

Bài giảng: Cách nhận dạng đồ thị hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Cách nhận dạng đồ thị hàm số bậc 3

Các dạng đồ thị của hàm số bậc 3 y = ax3 + bx2 + cx + d     (a ≠ 0)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    Đồ thị hàm số có 2 điểm cực trị nằm 2 phía so với trục Oy khi ac < 0

   Đồ thị hàm số bậc ba luôn nhận điểm uốn làm tâm đối xứng

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ 1: Đường cong trong hình bên dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   A. y = x3 - 3x + 1.

   B. y = -x3 + 3x2 + 1.

   C. y = x3 - 3x2 + 3x + 1.

   D. y = -x3 - 3x2 - 1.

Hướng dẫn

Nhìn dạng đồ thị thấy a > 0 , suy ra loại B, D.

Mặt khác hàm số không có cực trị nên loại A.

   Chọn C.

Ví dụ 2: Cho hàm số bậc 3 có dạng: y = f(x) = ax3 + bx2 + cx + d.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hãy chọn đáp án đúng?

   A. Đồ thị (IV) xảy ra khi a > 0 và f'(x) = 0 có nghiệm kép.

   B. Đồ thị (II) xảy ra khi a ≠ 0 và f'(x) = 0 có hai nghiệm phân biệt.

   C. Đồ thị (I) xảy ra khi a < 0 và f'(x) = 0 có hai nghiệm phân biệt.

   D. Đồ thị (III) xảy ra khi a > 0 và f'(x) = 0 vô nghiệm.

Hướng dẫn

Hàm số của đồ thị (II) có a < 0 nên điều kiện a ≠ 0 chưa đảm bảo. Do đó loại phương án B.

Hàm số của đồ thị (I) có a > 0 nên loại luôn phương án C.

Hàm số của đồ thị (IV) có a < 0 nên loại luôn phương án A.

   Chọn D.

Ví dụ 3: Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Mệnh đề nào dưới đây đúng?

   A. a < 0,b > 0,c > 0,d > 0.

   B. a < 0,b < 0,c = 0,d > 0.

   C. a > 0,b < 0,c > 0,d > 0.

   D. a < 0,b > 0,c = 0,d > 0.

Hướng dẫn

Từ hình dáng đồ thị ta suy ra hệ số a < 0,d > 0 loại đáp án C.

Ta có: y' = 3ax2 + 2bx + c

Vì hàm số đạt cực tiểu tại điểm x = 0 nên y'(0) = 0 ⇒ c = 0 loại đáp án A.

Khi đó: y' = 0 ⇔ 3ax2 + 2bx = 0 ⇔ x = 0 hoặc x = -2b/3a

Do hoành độ điểm cực đại dương nên -2b/3a > 0, mà a < 0 ⇒ b > 0.

   Chọn D.

Cách nhận dạng đồ thị hàm số bậc 4

Các dạng đồ thị của hàm số bậc 4 trùng phương y = ax4 + bx2 + c     (a ≠ 0)

   Đồ thị có 3 điểm cực trị :

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Đồ thị có 1 điểm cực trị :

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Đồ thị hàm bậc bốn trùng phương luôn nhận trục tung làm trục đối xứng

Ví dụ 1: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   A. y = x4 - 3x2+1.     B. y = x4 + 2x2.

   C. y = x4 - 2x2.     D. y = -x4 - 2x2.

Hướng dẫn

Từ đồ thị và đáp án suy ra đây là hàm số bậc 4 trùng phương: y = ax4 + bx2 + c     (a ≠ 0) có 3 cực trị nên a > 0,b < 0. Do đó loại B, D. Do đồ thị qua O(0; 0)nên c = 0 loại A.

Từ đồ thị suy ra hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = ±1 nên loại A, B, D.

Chọn C.

Ví dụ 2: Giả sử hàm số y = ax4 + bx2 + c có đồ thị là hình bên dưới. Tìm a,b, c.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn

y' = 4ax3 + 2bx

Nhìn đồ thị ta thấy :

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ 3: Cho hàm số y=f(x) có đồ thị (C) như hình vẽ. Chọn khẳng định sai về hàm số f(x):

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   A. Hàm số f(x) tiếp xúc với Ox.

   B. Hàm số f(x) đồng biến trên (-1; 0).

   C. Hàm số f(x) nghịch biến trên (-∞; -1).

   D. Đồ thị hàm số f(x) có tiệm cận ngang là y = 0.

Hướng dẫn

Từ đồ thị ta suy ra các tính chất của hàm số:

   1. Hàm số đạt CĐ tại x = 0 và đạt CT tại x = ±1.

   2. Hàm số tăng trên (-1; 0) và (1; +∞).

   3. Hàm số giảm trên (-∞; -1) và (0; 1).

   4. Hàm số không có tiệm cận.

Chọn D.

Cách nhận dạng đồ thị hàm số phân thức

Các dạng đồ thị của hàm số nhất biến y = (ax + b)/(cx + d),(ab - bc ≠ 0)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Đồ thị hàm nhất biến luôn nhận giao của hai đường tiệm cận làm tâm đối xứng

Ví dụ 1: Xác định a,b,c để hàm số y = (ax - 1)/(bx + c) có đồ thị như hình vẽ bên dưới.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Đồ thị hàm số cắt Oy tại A(0; 1) nên (-1)/c = 1 ⇒ c = -1 (3)

   Từ (1), (2), (3) ta có c = -1, b = 1, a = 2.

Ví dụ 2: Hàm số y = (x - 2)/(x - 1) có đồ thị là hình vẽ nào sau đây? Hãy chọn câu trả lời đúng.

A. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

C. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

D. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn

   Hàm số y = (x - 2)/(x - 1) có tiệm cận đứng x = 1. Tiệm cận ngang y = 1 nên loại trường hợp D.

   Đồ thị hàm số y = (x - 2)/(x - 1) đi qua điểm (0; 2) nên chọn đáp án A.

Ví dụ 3: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn

   Nhìn vào đồ thị ta thấy ngay tiệm cận đứng x = -1, tiệm cận ngang y = 2. Loại B, D.

   Đồ thị hàm số đi qua điểm (0; -1).

   y = (2x + 1)/(x + 1) khi x = 0 ⇒ y = 1. Loại đáp án B.

   y = (2x - 1)/(x + 1) khi x = 0 ⇒ y = -1. Chọn đáp án A.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:




Giải bài tập lớp 12 sách mới các môn học