Cách biến đổi đẳng thức đã cho thành đẳng thức logarit (cực hay)
Bài viết Cách biến đổi đẳng thức đã cho thành đẳng thức logarit với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách biến đổi đẳng thức đã cho thành đẳng thức logarit.
Bài giảng: Tất tần tật về Logarit - Cô Nguyễn Phương Anh (Giáo viên VietJack)
1. Phương pháp giải
Từ đẳng thức đã cho thêm bớt thích hợp để xuất hiện hằng đẳng thức. Sau đó, lấy loga 2 vế ( lựa chọn cơ số thích hợp- dựa vào đáp án) ...,đồng thời áp dụng các tính chất của logarit..
2. Ví dụ minh họa
Ví dụ 1. Cho a > 0; b > 0 thỏa điều kiện a2 + b2 = 7ab .Khẳng định nào sau đây đúng:
Lời giải:
Đáp án: D
Theo giả thiết: a2 + b2 = 7ab ⇔ (a + b)2 = 9ab ( cộng 2ab vào 2 vế).
Lấy logarit cơ số 10 hai vế ta được:
Ví dụ 2. Cho x; y là các số thực lớn hơn 1 thoả mãn x2 + 9y2 = 6xy. Tính
Lời giải:
Đáp án: B
* Ta có x2 + 9y2 = 6xy ⇔ x2 − 6xy + 9y2 = 0
⇔ (x − 3y)2 = 0 ⇔ x = 3y.
Khi đó
Ví dụ 3. Cho a, b là các số thực dương khác 1, thoả mãn loga2b + logb2a = 1 . Mệnh đề nào dưới đây là đúng?
Lời giải:
Đáp án: B
Ví dụ 4. Cho các số dương a, b thõa mãn 4a2 + 9b2 = 13ab. Chọn câu trả lời đúng
Lời giải:
Đáp án: C
Ta có: 4a2 + 9b2 = 13ab ⇔ 4a2 + 12ab + 9b2 = 25ab
⇔ (2a + 3b)2 = 25ab ( vì a; b > 0 nên a + b > 0; ab > 0 ).
Suy ra
Ví dụ 5. Cho x, y > 0 và x2 + 4y2 = 12xy. Khẳng định nào sau đây là khẳng định đúng?
Lời giải:
Đáp án: B
Vì x2 + 4y2 = 12xy nên x2 + 4xy + 4y2 = 16xy
⇔ (x + 2y)2 = 16xy ⇔ log2 (x + 2y)2 = log216xy.
⇔ 2. log2 (x + 2y) = log2 16 + log2 x + log2 y
⇔ 2.log2 ( x + 2y ) = 4 + log2x + log2y
Ví dụ 6. Cho a, b là các số thực dương thoả mãn a2 + b2 = 14ab. Khẳng định nào sau đây là sai ?
Lời giải:
Đáp án: C
Ta có
Nên ta có vậy A đúng
2log2 (a+b) = log2 (a+b)2 = log2 (16ab)=4 + log2a + log2b vậy B đúng
2log4 (a+b) = log4 (a+b)2 = log4 (16ab)=2 +l og4a + log4b vậy C sai
vậy D đúng
Bài giảng: Các bài toán thực tế - Ứng dụng hàm số mũ và logarit - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Dạng bài tập Rút gọn biểu thức chứa lũy thừa (cực hay)
- Dạng bài tập về so sánh các lũy thừa (cực hay)
- Dạng bài tập Tính giá trị của biểu thức lũy thừa (cực hay)
- Tìm điều kiện để biểu thức logarit xác định hay nhất
- Dạng bài tập Tính giá trị của biểu thức logarit (cực hay)
- Dạng bài tập Rút gọn biểu thức chứa logarit (cực hay)
- Dạng bài tập biểu diễn logarit này theo logarit khác (cực hay)
- Cách so sánh biểu thức chứa logarit (cực hay)
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều