Các dạng bài tập về Tập hợp chọn lọc có lời giải
Bài viết Các dạng bài tập về Tập hợp với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Các dạng bài tập về Tập hợp.
Bài giảng: Bài 2: Tập hợp - Thầy Lê Thành Đạt (Giáo viên VietJack)
Phần dưới là Chuyên đề tổng hợp Lý thuyết và Bài tập Toán 10 Chuyên đề: Tập hợp và các phép toán trên tập hợp có đáp án. Bạn vào tên dạng hoặc Xem chi tiết để theo dõi các chuyên đề Toán 10 Đại số tương ứng.
- Lý thuyết Tập hợp và các phép toán trên tập hợp Xem chi tiết
- Dạng 1: Cách xác định tập hợp Xem chi tiết
- Dạng 2: Các phép toán trên tập hợp Xem chi tiết
- Dạng 3: Giải toán bằng biểu đồ Ven Xem chi tiết
- Bài tập Tập hợp và các phép toán trên tập hợp (có đáp án) Xem chi tiết
Cách xác định, cách viết tập hợp
1: Với tập hợp A, ta có 2 cách:
Cách 1: liệt kê các phần tử của A: A={a1; a2; a3;..}
Cách 2: Chỉ ra tính chất đặc trưng cho các phần tử của A
2:Tập hợp con
Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B, kí hiệu là A ⊂ B.
A ⊂ B ⇔ ∀x : x ∈ A ⇒ x ∈ B.
A ⊄ B ⇔ ∀x : x ∈ A ⇒ x ∉ B.
Tính chất:
1) A ⊂ A với mọi tập A.
2) Nếu A ⊂ B và B ⊂ C thì A ⊂ C.
3) ∅ ⊂ A với mọi tập hợp A.
Ví dụ 1: Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó:
a) A={x ∈ R|(2x - x2 )(2x2 - 3x - 2)=0}.
b) B={n ∈ N|3 < n2 < 30}.
Lời giải:
a) Ta có:
(2x - x2 )(2x2 - 3x - 2) =0 ⇔
⇔
⇒
b) 3 < n2 < 30 ⇒ √3 < |n| < √30
Do n ∈ N nên n ∈ {2;3;4;5}
⇒ B = {2;3;4;5}.
Ví dụ 2: Viết mỗi tập hợp sau bằng cách chỉ rõ tính chất đặc trưng cho các phần tử của nó:
a) A = {2; 3; 5; 7}
b) B = {-3; -2; -1; 0; 1; 2; 3}
c) C = {-5; 0; 5; 10; 15}.
Lời giải:
a) A là tập hợp các số nguyên tố nhỏ hơn 10.
b) B là tập hơp các số nguyên có giá trị tuyệt đối không vượt quá 3.
B={x ∈ Z||x| ≤ 3}.
c) C là tập hợp các số nguyên n chia hết cho 5, không nhỏ hơn -5 và không lớn hơn 15.
C={n ∈ Z|-5 ≤ n ≤ 15; n ⋮ 5}.
Ví dụ 3: Cho tập hợp A có 3 phần tử. Hãy chỉ ra số tập con của tập hợp A.
Lời giải:
Giả sử tập hợp A={a;b;c}. Các tập hợp con của A là:
∅ ,{a},{b},{c},{a;b},{b;c},{c;a},{a;b;c}
Tập A có 8 phần tử
Chú ý: Tổng quát, nếu tập A có n phần tử thì số tập con của tập A là 22 phần tử.
Cách giải bài tập các phép toán trên tập hợp
Hợp của 2 tập hợp:
x ∈ A ∪ B ⇔
Giao của 2 tập hợp
x ∈ A ∩ B ⇔
Hiệu của 2 tập hợp
x ∈ A \ B ⇔
Phần bù
Khi B ⊂ A thì A\B gọi là phần bù của B trong A, kí hiệu là CA B.
Ví dụ 1: Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B;A ∩ B;A \ B;B \ A.
Lời giải:
1. A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
2. A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
3. A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.
4. B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.
Ví dụ 2: Cho hai tập hợp:
A = { x ∈ R | x2 - 4x + 3 = 0};
B = { x ∈ R | x2 - 3x + 2 = 0}.
Tìm A ∪ B ; A ∩ B ; A \ B ; B \ A.
Lời giải:
Ta có: A={1;3} và B={1;2}
A ∪ B={1;2;3}
A ∩ B={1}
A \ B={3}
B \ A={2}
Ví dụ 3: Cho đoạn A=[-5;1] và khoảng B =(-3; 2). Tìm A ∪ B; A ∩ B.
Lời giải:
A ∪ B=[-5;2)
A ∩ B=(-3;1]
Cách giải toán bằng biểu đồ Ven
- Vẽ các vòng tròn đại diện các tập hợp (mỗi vòng tròn là một tập hợp) lưu ý 2 vòng tròn có phần chung nếu của 2 tập hợp khác rỗng.
- Dùng các biến để chỉ số phần tử của từng phần không giao nhau.
- Từ giả thiết bài toán, lập hệ phương trình và giải tìm các biến.
Ví dụ 1:Trong kì thi học sinh giỏi cấp trường, lớp 10A có 17 bạn được công nhận học sinh giỏi văn, 25 bạn học sinh giỏi toán. Tìm số học sinh đạt cả 2 giải văn và toán, biết lớp 10A có 45 bạn và có 13 bạn không đạt học sinh giỏi.
Lời giải:
Biểu diễn tập hợp các học sinh giỏi văn và các học sinh giỏi toán bằng 2 đường cong kín và tập hợp các học sinh lớp 10A bằng hình chữ nhật như hình bên dưới.
Gọi x là số học sinh giỏi văn không giỏi toán; y là số học sinh giỏi cả văn và toán; z là số học sinh chỉ giỏi toán mà không giỏi văn và t là số học sinh không đạt học sinh giỏi.
Theo biểu đồ giả thiết, ta có:
Cộng (1) với (2) rồi trừ cho (3) ta được:
(x + y) + (y + z) – (x + y + z + t) = 17 + 25 - 45
⇒ y - t = - 3 ⇒ y = t – 3 = 10
Vậy lớp 10A có 10 học sinh giỏi cả 2 môn văn và toán.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Chuyên đề: Mệnh đề
- Chuyên đề: Tập hợp và các phép toán trên tập hợp
- Chuyên đề: Số gần đúng và sai số
- Bài tập tổng hợp Chương Mệnh đề, Tập hợp (có đáp án)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều