Cách giải bài tập các phép toán trên tập hợp (hay, chi tiết)



Bài viết Cách giải bài tập các phép toán trên tập hợp với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải bài tập các phép toán trên tập hợp.

Hợp của 2 tập hợp:

x ∈ A ∪ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Giao của 2 tập hợp

x ∈ A ∩ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hiệu của 2 tập hợp

x ∈ A \ B ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phần bù

Khi B ⊂ A thì A\B gọi là phần bù của B trong A, kí hiệu là CA B.

Ví dụ 1: Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B;A ∩ B;A \ B;B \ A.

Lời giải:

1. A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.

2. A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.

3. A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.

4. B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.

Ví dụ 2: Cho hai tập hợp:

A = { x ∈ R | x2 - 4x + 3 = 0};

B = { x ∈ R | x2 - 3x + 2 = 0}.

Tìm A ∪ B ; A ∩ B ; A \ B ; B \ A.

Lời giải:

Ta có: A={1;3} và B={1;2}

A ∪ B={1;2;3}

A ∩ B={1}

A \ B={3}

B \ A={2}

Ví dụ 3: Cho đoạn A=[-5;1] và khoảng B =(-3; 2). Tìm A ∪ B; A ∩ B.

Lời giải:

A ∪ B=[-5;2)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

A ∩ B=(-3;1]

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ví dụ 4: Cho A={1,2,3,4,5,6,9}; B={1,2,4,6,8,9} và C={3,4,5,6,7}

a) Tìm hai tập hợp (A \ B) ∪ (B \ A) và (A ∪ B) \\ (A ∩ B). Hai tập hợp nhận được có bằng nhau không?

b) Hãy tìm A ∩ (B \ C) và (A ∩ B) \ C. Hai tập hợp nhận được có bằng nhau không?

Lời giải:

a) A \ B={3,5}; B \ A={8}

⇒ (A \ B) ∪ (B \ A)={3;5;8}

A ∪ B={1,2,3,4,5,6,8,9}

A ∩ B={1,2,4,6,9}

⇒ (A ∪ B) \\ (A ∩ B)= {3;5;8}

Do đó: (A \ B) ∪ (B \ A)=(A ∪ B) \\ (A ∩ B)

b) B \ C={1,2,8,9}

⇒ A ∩ (B \ C) ={1,2,9}.

A ∩ B={1,2,4,6,9}

⇒ (A ∩ B) \ C ={1,2,9}.

Do đó A ∩ (B \ C) =(A ∩ B) \ C

Ví dụ 5: Tìm tập hợp A, B biết:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Lời giải:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

⇒ A = {1,5,7,8} ∪ {3,6,9} = {1,3,5,6,7,8,9}

B={2,10} ∪ {3,6,9} = {2,3,6,9,10}

Ví dụ 6:

Cho hai đoạn A=[a ;a + 2 ] và B=[b ;b + 1]. Các số a và b cần thỏa mãn điều kiện gì để A ∩ B≠ ∅

Lời giải:

Điều kiện để A ∩ B= ∅ là:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Từ đó, suy ra điều kiện để A ∩ B ≠ ∅ là b-2 ≤ a ≤ b + 1

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


tap-hop-va-cac-phep-toan-tren-tap-hop.jsp


Giải bài tập lớp 10 sách mới các môn học