Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng lớp 10 (hay, chi tiết)



Bài viết Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng.

1. Tính chất

Trên hình bên ta có dây cung NM song song với trục Ox và nếu ∠ xOM = α thì ∠xON = 180o – α. Ta có yM = yN = yo, xM = –xN = xo. Do đó

sin α = sin(180o – α)

cos α = –cos(180o – α)

tan α = –tan(180o – α)

cot α = –cot(180o – α)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Giá trị lượng giác của các góc đặc biệt

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong bảng kí hiệu “||” để chỉ giá trị lượng giác không xác định.

Chú ý. Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá trị lượng giác của một số góc đặc biệt khác.

Chẳng hạn:

sin 120o = sin(180o – 60o) = sin60o = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

cos 135o = cos(180o – 45o) = –cos45o = -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Góc giữa hai vectơ

a) Định nghĩa

Cho hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án đều khác vectơ 0 .Từ một điểm O bất kì ta vẽ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Góc ∠AOB với số đo từ 0o đến 180o được gọi là góc giữa hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án . Ta kí hiệu góc giữa hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nếu ( Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ) = 90o thì ta nói rằng Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án vuông góc với nhau, kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Chú ý. Từ định nghĩa ta có Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Cho hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án đều khác vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án. Tích vô hướng của Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án là một số, kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được xác định bởi công thức sau:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trường hợp ít nhất một trong hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án bằng vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

ta quy ước:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý

+) Với Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án khác vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

+) Khi Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án tích vô hướng Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án được kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án và số này được gọi là bình phương vô hướng của vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Người ta chứng minh được các tính chất sau đây của tích vô hướng:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nhận xét. Từ các tính chất của tích vô hướng của hai vectơ ta suy ra:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trên mặt phẳng tọa độ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án, cho hai vectơ:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Khi đó tích vô hướng Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nhận xét. Hai vectơ:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

đều khác vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án vuông góc với nhau khi và chỉ khi: a1b1 + a2b2 = 0.

a) Độ dài của vectơ

Độ dài của vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (a1, a2), được tính theo công thức:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Góc giữa hai vectơ

Từ định nghĩa tích vô hướng của hai vectơ ta suy ra nếu Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (a1, a2) và Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = (b1, b2) đều khác Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án thì ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

c) Khoảng cách giữa hai điểm

Khoảng cách giữa hai điểm A(xA; yA) và B(xB; yB) được tính theo công thức:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

1. Định lí côsin

Cho tam giác ABC có BC = a, AC = b và AB = c

Ta có

a2 = b2 + c2 – 2bc.cosA;

b2 = c2 + a2 – 2ca.cosB;

c2 = a2 + b2 – 2ab.cosC.

Hệ quả

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Định lí sin

Cho tam giác ABC có BC = a, AC = b, AB = c và R là bán kính đường tròn ngoại tiếp.

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Độ dài đường trung tuyến

Cho tam giác ABC có ma, mb, mc lần lượt là các trung tuyến kẻ từ A, B, C.

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

4. Công thức tính diện tích tam giác

Cho tam giác ABC có

+) ha, hb, hc là độ dài đường cao lần lượt tương ứng với các cạnh BC, CA, AB;

+) R là bán kính đường tròn ngoại tiếp tam giác;

+) r là bán kính đường tròn nội tiếp tam giác;

+) p = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án là nửa chu vi tam giác;

+) S là diện tích tam giác.

Khi đó ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


tich-vo-huong-cua-hai-vecto-va-ung-dung.jsp


Giải bài tập lớp 10 sách mới các môn học