Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o lớp 10 (hay, chi tiết)
Bài viết Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o.
Bài giảng: Bài 1: Giá trị lượng giác của một góc bất kì từ 0o đến 180o - Thầy Lê Thành Đạt (Giáo viên VietJack)
1. Định nghĩa
Với mỗi góc α (0o ≤ α ≤ 180o) ta xác định một điểm M trên nửa đường tròn đơn vị sao cho ∠ xOM = α và giả sử điểm M có tọa độ M(xo, yo).
Khi đó ta có định nghĩa:
sin của góc α là yo, kí hiệu sinα = yo;
cosin của góc α là xo, kí hiệu cosα = xo
tang của góc α là (xo ≠ 0),
kí hiệu tanα =
cotang của góc α là (yo ≠ 0), kí hiệu cotα = .
2. Tính chất
Trên hình bên ta có dây cung NM song song với trục Ox và nếu ∠ xOM = α thì ∠xON = 180o – α. Ta có yM = yN = yo, xM = –xN = xo. Do đó
sin α = sin(180o – α)
cos α = –cos(180o – α)
tan α = –tan(180o – α)
cot α = –cot(180o – α)
3. Giá trị lượng giác của các góc đặc biệt
Trong bảng kí hiệu “||” để chỉ giá trị lượng giác không xác định.
Chú ý. Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá trị lượng giác của một số góc đặc biệt khác.
Chẳng hạn:
sin 120o = sin(180o – 60o) = sin60o =
cos 135o = cos(180o – 45o) = –cos45o = -
4. Góc giữa hai vectơ
a) Định nghĩa
Cho hai vectơ đều khác vectơ 0 .Từ một điểm O bất kì ta vẽ Góc ∠AOB với số đo từ 0o đến 180o được gọi là góc giữa hai vectơ . Ta kí hiệu góc giữa hai vectơ là
Nếu ( ) = 90o thì ta nói rằng vuông góc với nhau, kí hiệu là
b) Chú ý. Từ định nghĩa ta có .
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Lý thuyết Tích vô hướng của hai vectơ
- Lý thuyết Các hệ thức lượng trong tam giác và giải tam giác
- Lý thuyết Tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều