Thực hành 1 trang 67 Toán 9 Tập 2 Chân trời sáng tạo

Thực hành 1 trang 67 Toán 9 Tập 2: Xác định tâm và bán kính của đường tròn ngoại tiếp mỗi tam giác sau:

a) Tam giác đều MNP có cạnh bằng 4;

b) Tam giác EFG có EF = 5 cm; EG = 3 cm; FG = 4 cm.

Lời giải:

a) Vẽ đường cao MH của  giác  MNP, gọi O là điểm nằm trên MH sao cho OM = 23MH.

Do tam giác MNP đều nên O vừa là trọng tâm vừa là giao điểm của ba đường trung trực.

Bán kính đường tròn ngoại tiếp tam giác MNP là:

R = OH = a33=433  (cm).

Do đó, đường tròn ngoại tiếp tam giác đều MNP có tâm O và bán kính R=433  cm.

Ta có hình vẽ:

Thực hành 1 trang 67 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

b) Xét tam giác EFG có 52 = 32 + 42 nên EF2 = EG2 + FG2.

Suy ra tam giác EFG vuông tại G.

Gọi I là trung điểm của cạnh huyền EF.

Ta có GI là đường trung tuyến ứng với cạnh huyền của tam giác EFG vuông tại G.

Suy ra IG = IE = IF = EF2 = 2,5 (cm).

Do đó, đường tròn tâm I bán kính 5 cm ngoại tiếp tam giác EFG.

Ta có hình vẽ:

Thực hành 1 trang 67 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

Lời giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác