Bài 2 trang 69 Toán 9 Tập 2 Chân trời sáng tạo

Bài 2 trang 69 Toán 9 Tập 2: Cho tam giác ABC (AC < BC) nội tiếp đường tròn (O) có AB là đường kính. Từ điểm O vẽ đường thẳng song song với AC và cắt đường tròn (O) tại I (điểm I thuộc cung nhỏ CB).

a) Chứng minh OI vuông góc với BC.

b) Vẽ tiếp tuyến của đường tròn (O) tại B và cắt OI tại M. Chứng minh MC là tiếp tuyến của đường tròn (O).

Lời giải:

Bài 2 trang 69 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

a) Ta có ACB^=90° (góc nội tiếp chắn nửa đường tròn), suy ra AC ⊥ BC.

Mà AC // OI nên OI ⊥ BC (tính chất từ vuông góc đến song song).

b) Gọi N là giao điểm của BC và OI.

Tam giác OBC có OB = OC = R nên ∆OBC cân tại O.

Ta có ON là đường cao của ∆OBC cân tại O.

Suy ra ON cũng là đường phân giác của COB^.

Do đó CON^=NOB^.

Xét ∆COM và ∆BOM có:

OM là cạnh chung; COM^=MOB^; OB = OC = R.

Do đó ∆COM = ∆BOM (c.g.c).

Suy ra OCM^=OBM^ (hai góc tương ứng).

Mà OBM^=90° (BM là tiếp tuyến của đường tròn (O) tại B).

Suy ra OCM^=OBM^=90° nên OC ⊥ MC tại C.

Mà C thuộc đường tròn (O), do đó MC là tiếp tuyến của đường tròn (O).

Lời giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác