Bài 16 trang 86 Toán 8 Tập 2 Chân trời sáng tạo

Bài 16 trang 86 Toán 8 Tập 2: Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH (H ∈ BC).

a) Chứng minh rằng ΔABH ᔕ ΔCBA, suy ra AB2 = BH.BC.

b) Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. Chứng minh rằng AE.AB = AF.AC.

c) Chứng minh rằng ΔAFE ᔕ ΔABC.

d) Qua A vẽ đường thẳng song song với BC cắt đường thẳng HF tại I. Vẽ IN vuông góc BC tại N. Chứng minh rằng ΔHNF ᔕ ΔHIC.

Lời giải:

Bài 16 trang 86 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) Xét tam giác vuông ABH và CBA ta có:

B^ chung

Suy ra ΔABH ᔕ ΔCBA nên ABBC=BHAB hay AB2 = BH.BC

b) c) Tứ giác AEHF có 4 góc vuông suy ra AEHF là hình chữ nhật 

Do đó AEF^=AEH^

ΔABH ᔕ ΔCBA nên ACB^=AEH^

Xét tam giác AEF và ACB ta có:

A^ chung

ACB^=AEH^

Suy ra ΔAEF ᔕ ΔACB (g.g) nên AEAC=AFAB hay AE.AB = AF.AC

d) Xét tam giác vuông HNI và HFC ta có:

H^ chung

Suy ra ΔHNI ᔕ ΔHFC (g.g)

Nên HNHF=HIHC hay HNHI=HFHC

Xét tam giác HNF và HIC ta có:

H^ chung

HNHI=HFHC

Suy ra ΔHNF ᔕ ΔHIC (c.g.c).

Lời giải bài tập Toán 8 Bài tập cuối chương 8 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác