Giải Toán 7 trang 57 Tập 2 Chân trời sáng tạo

Với Giải Toán 7 trang 57 Tập 2 trong Bài 2: Tam giác bằng nhau Toán 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 57.

Thực hành 5 trang 57 Toán 7 Tập 2: Hãy chỉ ra các cặp tam giác bằng nhau trong Hình 22 và cho biết chúng bằng nhau theo trường hợp nào.

Hãy chỉ ra các cặp tam giác bằng nhau trong Hình 22

Lời giải:

+) Xét tam giác ABD vuông tại B và tam giác ACD vuông tại C:

BAD^=CAD^(theo giả thiết).

AD chung.

Do đó △ABD = △ACD (cạnh huyền - góc nhọn).

Suy ra DB = DC (2 cạnh tương ứng).

+) Xét tam giác DBE vuông tại B và tam giác DCH vuông tại C:

DB = DC (chứng minh trên).

BDE^=CDH^(2 góc đối đỉnh).

Do đó △DBE = △DCH (góc nhọn - cạnh góc vuông).

Suy ra DE = DH (2 cạnh tương ứng).

Do ΔABD=ΔACD(cạnh huyền - góc nhọn) nên ADB^=ADC^(2 góc tương ứng).

BDE^=CDH^nên ADB^+BDE^=ADC^+CDH^hay ADE^=ADH^.

+) Xét tam giác ADE và tam giác ADH:

AD chung.

ADE^=ADH^(chứng minh trên).

DE = DH (chứng minh trên).

Do đó △ADE = △ADH (c.g.c).

Bài 1 trang 57 Toán 7 Tập 2: Quan sát Hình 23 rồi thay dấu ? bằng tên tam giác thích hợp.

Quan sát Hình 23 rồi thay dấu ? bằng tên tam giác thích hợp.

a) ABE = ?

b) EAB = ?

c) ? = CDE.

Lời giải:

Quan sát Hình 23 ta thấy:

a) Xét △ABE và △DCE có:

AB = DC (theo giả thiết).

BE = CE (theo giả thiết).

AE = DE (theo giả thiết).

Suy ra △ABE = △DCE (c.c.c).

Vậy △ABE = △DCE.

b) Do △ABE = △DCE (chứng minh trên) nên △EAB = △EDC.

c) Do △ABE = △DCE (chứng minh trên) nên △BAE = △CDE.

Bài 2 trang 57 Toán 7 Tập 2: Cho △DEF = △HIK và D^= 73o, DE = 5 cm, IK = 7 cm. Tính số đo H^và độ dài HI, EF.

Lời giải:

Do △DEF = △HIK nên D^=H^(2 góc tương ứng), DE = HI (2 cạnh tương ứng), IK = EF (2 cạnh tương ứng).

Do đó H^= 73o, HI = 5 cm và EF = 7 cm.

Lời giải bài tập Toán 7 Bài 2: Tam giác bằng nhau hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác