Bài 9 trang 84 Toán 7 Tập 2 Chân trời sáng tạo

Bài 9 trang 84 Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

a) Chứng minh rằng tam giác MBE cân.

b) Chứng minh rằng EBH^=ACM^.

c) Chứng minh rằng EBBC.

Lời giải:

Bài 9 trang 84 Toán 7 Tập 2 Chân trời sáng tạo

a) Trên tia đối của tia HC lấy điểm E sao cho HE = HM nên H là trung điểm của ME.

Ta thấy BH vuông góc với ME tại trung điểm H của ME nên BH là đường trung trực của ME.

Do đó BM = BE.

Tam giác MBE có BM = BE nên tam giác MBE cân tại B.

b) Trong ΔBHMvuông tại H: HBM^+BMH^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra HBM^=90°BMH^.

Trong ΔCAMvuông tại A: ACM^+CMA^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ACM^=90°CMA^.

BMH^=CMA^(2 góc đối đỉnh) nên HBM^=ACM^(1).

Xét ΔBHEvuông tại H và ΔBHMvuông tại H có:

BH chung.

HE = HM (theo giả thiết).

Do đó ΔBHE=ΔBHM(2 cạnh góc vuông).

Suy ra EBH^=MBH^(2 góc tương ứng) (2).

Từ (1) và (2) suy ra EBH^=ACM^.

c) Do CM là tia phân giác của BCA^nên BCM^=ACM^.

Xét ΔBHCvuông tại H: HBC^+BCH^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra HBC^+ACM^=90°.

EBH^=ACM^nên HBC^+EBH^=90°hay EBC^=90°.

Do đó EB >BC.

Lời giải bài tập Toán 7 Bài tập cuối chương 8 trang 84 hay, chi tiết khác:

Các bài học để học tốt Toán 7 Bài tập cuối chương 8:

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác