Bài 8 trang 84 Toán 7 Tập 2 Chân trời sáng tạo
Bài 8 trang 84 Toán 7 Tập 2: Ở Hình 1, cho biết AE = AF và . Chứng minh rằng AH là đường trung trực của BC.
Lời giải:
Tam giác ABC có nên tam giác ABC cân tại A.
Do đó AB = AC.
Suy ra A nằm trên đường trung trực của BC (1).
Mà AE = AF nên AB - AE = AC - AF hay BE = CF.
Xét và có:
BE = CF (chứng minh trên).
(theo giả thiết).
BC chung.
Do đó (c.g.c).
Suy ra (2 góc tương ứng) hay .
Tam giác HBC có nên tam giác HBC cân tại H.
Do đó HB = HC.
Suy ra H nằm trên đường trung trực của BC (2).
Từ (1) và (2) suy ra AH là đường trung trực của BC.
Lời giải bài tập Toán 7 Bài tập cuối chương 8 trang 84 hay, chi tiết khác:
Các bài học để học tốt Toán 7 Bài tập cuối chương 8:
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Toán 7 Bài 10: Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
Toán 7 Bài 3: Hoạt động thực hành và trải nghiệm: Nhảy theo xúc xắc
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Chân trời sáng tạo
- Giải SBT Toán 7 Chân trời sáng tạo
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST