Bài 8 trang 58 Toán 7 Tập 2 Chân trời sáng tạo

Bài 8 trang 58 Toán 7 Tập 2: Cho góc xOy. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a) AD = BC.

b) △EAB = △ECD.

c) OE là tia phân giác của góc xOy.

Lời giải:

Bài 8 trang 58 Toán 7 Tập 2 Chân trời sáng tạo

a) Xét hai tam giác OAD và OCB có:

OA = OC (theo giả thiết).

O^chung.

OD = OB (theo giả thiết).

Do đó △OAD = △OCB (c.g.c).

Suy ra AD = BC (2 cạnh tương ứng).

b) Do OA = OC, OB = OD nên OB - OA = OD - OC hay AB = CD.

Do △OAD = △OCB (c.g.c) nên ODA^=OBC^(2 góc tương ứng).

ECD^là góc ngoài tại đỉnh C của tam giác OBC nên ECD^=COB^+OBC^(1).

EAB^là góc ngoài tại đỉnh A của tam giác OAD nên EAB^=AOD^+ODA^(2).

Từ (1) và (2) suy ra ECD^=EAB^.

Xét hai tam giác EAB và ECD có:

EAB^=ECD^(chứng minh trên).

AB = CD (chứng minh trên).

EBA^=EDC^(chứng minh trên).

Do đó △EAB = △ECD (g.c.g).

c) Do △EAB = △ECD (g.c.g) nên BE = DE (2 cạnh tương ứng).

Xét hai tam giác ODE và OBE có:

OD = OB (theo giả thiết).

OE chung.

DE = BE (theo giả thiết).

Do đó △ODE = △OBE (c.c.c).

Suy ra EOD^=EOB^(2 góc tương ứng).

Vậy OE là tia phân giác của xOy^.

Lời giải bài tập Toán 7 Bài 2: Tam giác bằng nhau hay, chi tiết khác:

Các bài học để học tốt Toán 7 Bài 2: Tam giác bằng nhau:

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác