Giải Toán 11 trang 19 Tập 1 Kết nối tri thức

Với Giải Toán 11 trang 19 Tập 1 trong Bài 2: Công thức lượng giác Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 19.

Luyện tập 2 trang 19 Toán 11 Tập 1: Không dùng máy tính, tính cosπ8.

Lời giải:

Ta có: 22=cosπ4=cos2.π8=2cos2π81.

Suy ra 2cos2π8=1+22. Do đó, cos2π8=2+24.

cosπ8>0 nên suy ra cosπ8=2+22.

HĐ3 trang 19 Toán 11 Tập 1: Xây dựng công thức biến đổi tích thành tổng

a) Từ các công thức cộng cos(a + b) và cos(a – b), hãy tìm: cos a cos b; sin a sin b.

b) Từ các công thức cộng sin(a + b) và sin(a – b), hãy tìm: sin a cos b.

Lời giải:

a) Ta có: cos(a + b) = cos a cos b – sin a sin b  (1);

cos(a – b) = cos a cos b + sin a sin b   (2).

Lấy (1) và (2) cộng vế theo vế, ta được: cos(a + b) + cos(a – b) = 2cos a cos b.

Từ đó suy ra, cos a cos b = 12[cos(a + b) + cos(a – b)].

Lấy (2) trừ vế theo vế cho (1), ta được: cos(a – b) – cos(a + b) = 2sin a sin b.

Từ đó suy ra, sin a sin b = 12[cos(a – b) – cos(a + b)].

b) Ta có: sin(a + b) = sin a cos b + cos a sin b  (3);

sin(a – b) = sin a cos b – cos a sin b   (4).

Lấy (3) và (4) cộng vế theo vế, ta được: sin(a + b) + sin(a – b) = 2sin a cos b.

Từ đó suy ra, sin a cos b = 12[sin(a + b) + sin(a – b)].

Luyện tập 3 trang 19 Toán 11 Tập 1: Không dùng máy tính, tính giá trị của các biểu thức:

A = cos 75° cos 15°; B = sin5π12cos7π12.

Lời giải:

Ta có:

A = cos 75° cos 15° = 12[cos(75° – 15°) + cos(75° + cos 15°)]

= 12(cos 60° + cos 90°) = 1212+0=14.

B = sin5π12cos7π12 = 12sin5π127π12+sin5π12+7π12

=12sinπ6+sinπ=12sinπ6+sinπ=1212+0=14.

Lời giải bài tập Toán 11 Bài 2: Công thức lượng giác hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác