Vận dụng trang 86 Toán 10 Tập 2 - Kết nối tri thức

Vận dụng trang 86 Toán 10 Tập 2: Giải bài toán trong tình huống mở đầu.

Lời giải:

Phép thử của bài toán là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45. Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1; 2; 3; …; 45}. 

Do đó số phần tử của không gian mẫu là n(Ω) = C456

+ Gọi F là biến cố: “Bạn An trúng giải độc đắc”. 

Ta có: F là tập hợp có duy nhất 1 phần tử là tập {5; 13; 20; 31; 32; 35}. Do đó, n(F) = 1. 

Vậy xác suất để bạn An trúng giải độc đắc là PF=nFnΩ=1C456=18  145  060

+ Gọi G là biến cố: “Bạn An trúng giải nhất”.

Vì nếu bộ số của người chơi trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất. 

Do đó G là tập hợp tất cả các tập con gồm 6 phần tử của tập {1; 2; 3; …; 45} có tính chất: năm phần tử của nó thuộc tập {5; 13; 20; 31; 32; 35} và một phần tử còn lại không thuộc tập {5; 13; 20; 31; 32; 35}. Nghĩa là phần tử còn lại này phải thuộc tập {1; 2; 3; …; 45} \ {5; 13; 20; 31; 32; 35} (tập hợp này gồm 45 – 6 = 39 phần tử).

Mỗi phần tử của G được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 5 phần tử trong tập {5; 13; 20; 31; 32; 35}, có C65 cách chọn. 

Công đoạn 2. Chọn 1 phần tử trong 39 phần tử còn lại, có C391 cách chọn. 

Theo quy tắc nhân, số phần tử của G là: n(G) = C65.C391=234 (phần tử). 

Vậy xác suất để bạn An trúng giải nhất là PG=nGnΩ=234C456=391  357510.

Lời giải bài tập Toán 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác