Bài 7.35 trang 59 Toán 10 Tập 2 - Kết nối tri thức

Bài 7.35 trang 59 Toán 10 Tập 2: Cho elip (E): x2a2+y2b2=1   a>b>0

a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2,  B1B2.

b) Xét một điểm bất kì M(x0; y0) thuộc (E).

Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a. 

Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b. 

Lời giải:

a) 

+) Có A1 thuộc trục hoành Ox nên y = 0, hơn nữa A1 lại thuộc (E) nên x2a2+02b2=1.

⇔ x2 = a2

Chọn A1 nằm bên trái trục Oy nên có hoành độ âm. Vậy tọa độ A1(– a; 0).

Chọn A2 nằm bên phải trục Oy nên có hoành độ dương. Vậy tọa độ A2(a; 0).

Suy ra độ dài A1A2 = aa2+002=2a2=2a (do a > 0).

+) B1 thuộc trục tung Oy nên x = 0,hơn nữa B1 lại thuộc (E) nên 02a2+y2b2=1.

⇔ y2 = b2.

Chọn B1 nằm phía dưới trục Ox nên có tung độ âm. Vậy tọa độ B1(0; – b).

Chọn B2 nằm phía trên trục Ox nên có tung độ dương. Vậy tọa độ B2(0; b).

Suy ra độ dài B1B002+bb2=2b2= 2b  (do b > 0).

Vậy A1A2 = 2a, B1B2 = 2b. 

b) Vì M(x0; y0) thuộc (E) nên ta có tọa độ điểm M thỏa mãn phương trình (E), do đó: 

x02a2+y02b2=1 . 

+) Giả sử b2 ≤ x02 + y02, chia cả hai vế cho b2 > 0 ta được: 

b2b2x02b2+y02b21x02b2+y02b2x02a2+y02b2x02b2+y02b2x02a2x02b2

Do a > b > 0 nên a2 > b2 > 0, và x02 ≥ 0 với mọi x0 nên x02a2x02b2 luôn đúng. 

Vậy b2 ≤ x02 + y02

+) Chứng minh tương tự ta được: x02 + y02 ≤ a2

Vậy b2 ≤ x02 + y02 ≤ a2     (*).

+) Ta lại có: OM = x02+y02

Từ (*) ta suy ra: bx02+y02a

Do đó: b ≤ OM ≤ a. 

Lời giải bài tập Toán 10 Bài tập cuối chương 7 trang 58, 59 hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài tập cuối chương 7:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác