Bài 7.32 trang 58 Toán 10 Tập 2 - Kết nối tri thức

Bài 7.32 trang 59 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho A(1; – 1), B(3; 5), C(– 2; 4). Tính diện tích tam giác ABC.

Lời giải:

Độ dài đường cao từ đỉnh A đến BC chính bằng khoảng cách từ A đến đường thẳng BC, do đó diện tích của tam giác ABC bằng nửa tích khoảng cách từ A đến BC với BC. 

Ta viết phương trình đường thẳng BC: có vectơ chỉ phương là BC=23;45=5;1  và đi qua B(3; 5).

Suy ra vectơ pháp tuyến của đường thẳng BC là: n=1;5.

Do đó, phương trình đường thẳng BC là: 1(x – 3) – 5(y – 5) = 0 hay x – 5y + 22 = 0. 

Áp dụng công thức khoảng cách ta có: d(A; BC) = 15.1+2212+52=142613.

Độ dài đoạn BC là: BC = 322+542=26

Vậy diện tích tam giác ABC là: SABC12d(A; BC) . BC =  12.142613.26=14(đvdt).

Lời giải bài tập Toán 10 Bài tập cuối chương 7 trang 58, 59 hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài tập cuối chương 7:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác