Bài 8 trang 10 Toán 10 Tập 2 Chân trời sáng tạo

Bài 8 trang 10 Toán lớp 10 Tập 2: Tìm giá trị của m để:

a) 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ;

b) mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ.

Lời giải:

a) Xét f(x) = 2x2 + 3x + m + 1 là tam thức bậc hai với a = 2, b = 3, c = m + 1.

Ta có: ∆ = 32 – 4.2.(m + 1) = 9 – 8m – 8 = 1 – 8m.

Vì a = 2 > 0 nên để 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ thì ∆ < 0

⇔ 1 – 8m < 0

⇔ m > 18.

Vậy với m > 18thì 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ.

b) Xét g(x) = mx2 + 5x – 3

+) Với m = 0 thì g(x) = 5x – 3

Ta có: 5x – 3 ≤ 0 ⇔ x ≤ 35.

Do đó với m = 0 không thỏa mãn.

+) Với m ≠ 0 thì g(x) = mx2 + 5x – 3 là tam thức bậc hai với a = m, b = 5, c = - 3.

Ta có ∆ = 52 – 4.m.(-3) = 25 + 12m.

Để mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ thì

Tìm giá trị của m để: a) 2x^2 + 3x + m + 1 > 0

Vậy với m2512 thì mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ .

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 1: Dấu của tam thức bậc hai:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác