Bài 7 trang 97 Toán 10 Tập 1 Chân trời sáng tạo

Bài 7 trang 97 Toán lớp 10 Tập 1: Cho tam giác ABC.

a) Xác định các điểm M, N, P thỏa mãn: MB=12BC,AN=3NB,CP=PA.

b) Biểu thị mỗi vectơ MN,  MP theo hai vectơ BC,  BA.

c) Chứng minh ba điểm M, N, P thẳng hàng.

Lời giải:

a) Ta có: MB=12BC nên ba điểm M, B, C thẳng hàng và vectơ MB cùng hướng với vectơ BC  sao cho MB=12.BC hay MB = 12BC.

Lại có:  AN=3NB nên ba điểm A, N, B thẳng hàng và vectơ AN cùng hướng với vectơ NB sao cho AN=3NB hay AN = 3NB.

Có:  CP=PAPACP=0PA+CP=0PA+PC=0

⇔ P là trung điểm của đoạn thẳng AC.

Bài 7 trang 97 Toán 10 Tập 1 Chân trời sáng tạo | Giải Toán 10

b) Vì AN = 3NB nên BN = 14BA, do đó: BN=14BA.

Ta có: MN=MB+BN=12BC+14BA.

Vì MB = 12BC nên MC=32BC, do đó: MC=32BC.

P là trung điểm của AC nên CP=12CA.

Nên ta có: MP=MC+CP=32BC+12CA=32BC+12BABC

=3212BC+12BA=BC+12BA

Vậy MN=12BC+14BA và MP=BC+12BA.

c) Theo câu b ta có: MN=12BC+14BA=12BC+12BA=12MP

Do đó: MN=12MP

Từ đó suy ra ba điểm M, N, P thẳng hàng.

Lời giải bài tập Toán 10 Bài 3: Tích của một số với một vectơ hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 3: Tích của một số với một vectơ:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác