Bài 4 trang 92 Toán 10 Tập 2 Cánh diều

Bài 4 trang 92 Toán lớp 10 Tập 2: Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn

(x + 2)2 + (y + 7)2 = 169.

Lời giải:

Ta có: (x + 2)2 + (y + 7)2 = 169 ⇔ (x – (–2))2 + (y – (–7))2 = 132.

Do đó, đường tròn đã cho có tâm I(– 2; – 7) và bán kính R = 13.

Hoành độ của tiếp điểm là 3 hay x = 3, thay vào phương trình đường tròn ta được:

(3 + 2)2 + (y + 7)2 = 169 ⇔ (y + 7)2 = 144 ⇔ (y + 7)2 = 122

Suy ra y + 7 = 12 hoặc y + 7 = – 12

Suy ra y = 5 hoặc y = – 19.

Do đó ta tìm được các điểm thuộc đường tròn có hoành độ bằng 3 là A(3; 5) và B(3; – 19).

Phương trình tiếp tuyến của đường tròn tâm I(– 2; – 7) tại điểm A(3; 5) là

(3 + 2)(x – 3) + (5 + 7)(y – 5) = 0

⇔ 5x – 15 + 12y – 60 = 0

⇔ 5x + 12y – 75 = 0.

Phương trình tiếp tuyến của đường tròn tại B(3; – 19) là

(3 + 2)(x – 3) + (– 19 + 7)(y – (– 19)) = 0

⇔ 5x – 15 – 12y – 228 = 0

⇔ 5x – 12y – 243 = 0.

Vậy các phương trình tiếp tuyến thỏa mãn là 5x + 12y – 75 = 0; 5x – 12y – 243 = 0.

Lời giải Toán 10 Bài 5: Phương trình đường tròn hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 5: Phương trình đường tròn:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác