Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC

Bài 4.8 trang 56 SBT Toán 11 Tập 1: Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B'C' và BC cắt nhau tại D, hai đường thẳng C'A' và CA cắt nhau tại E và hai đường thẳng A'B' và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.

Lời giải:

Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC

Ta có D là giao điểm của hai đường thẳng B'C' và BC nên D là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).

E là giao điểm của hai đường thẳng A'C' và AC nên E là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).

F là giao điểm của hai đường thẳng A'B' và AB nên F là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).

Do đó, ba điểm D, E, F cùng thuộc giao tuyến của hai mặt phẳng (ABC) và (A'B'C) nên ba điểm đó thẳng hàng.

Lời giải SBT Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác