Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD

Bài 4.2 trang 55 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD.

a) Xác định giao tuyến của hai mặt phẳng (SAM) và (SCD).

b) Xác định giao tuyến của hai mặt phẳng (SBN) và (SAD).

c) Xác định giao tuyến của hai mặt phẳng (SAM) và (SBN).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD

a) Trong mặt phẳng (ABCD), gọi P là giao điểm của AM và CD.

Khi đó P ∈ (SAM) ∩ (SCD).

Mà S ∈ (SAM) ∩ (SCD).

Vậy SP là giao tuyến của hai mặt phẳng (SAM) và (SCD).

b) Trong mặt phẳng (ABCD), gọi Q là giao điểm của BN và AD.

Khi đó Q ∈ (SBN) ∩ (SAD).

Mà S ∈ (SBN) ∩ (SAD).

Vậy SQ là giao tuyến của hai mặt phẳng (SBN) và (SAD).

c) Trong mặt phẳng (ABCD), gọi R là giao điểm của AM và BN.

Khi đó R ∈ (SAM) ∩ (SBN).

Mà S ∈ (SAM) ∩ (SBN).

Vậy SR là giao tuyến của hai mặt phẳng (SAM) và (SBN).

Lời giải SBT Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác